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Abstract

Consider site percolation on a locally finite, connected graph G satisfying p.(G) < 1/2.
The percolation of words problem asks whether all binary sequences can almost surely be
embedded in site percolation configurations. Building on a result of Kesten and Benjamini
for periodic trees, we demonstrate this for all trees. This is joint work with Ritvik Radhakr-
ishnan.

1 Introduction

Consider Bernoulli site percolation on a graph G with pfi*°(G) < 3. Let Z = {0, 1}" be the set of
all infinite binary sequences, referred to as the set of all words. We say that a word & € Z is seen
from a vertex v € V if there exists a path (infinite self-avoiding path) v = vy ~ v] ~ vy ~ - -

such that: w; =¢& Vi > 0.

Define, the set of words seen from a vertex, S(v) = {{ € E: £ is seen from v}. We also define
the set of all words seen as Soo = (J ey S(v) = {£ € E: £ is seen from some v € V'}.

We want to study So.. We operate on connected, locally finite, (rooted) trees (7T, 0) satisfying
pSite(T) < % at p = % Let us start by stating the main problem we are interested in:

Conjecture 1 (Classification Conjecture II.(c), [HANS14]). Let G be an infinite graph, with
uniformly bounded degree, and ps'® denote its critical threshold for site percolation. If psit¢ <
p < 1—psite then all sequences can be embedded, i.e., Py(See = Z) =1

We start by stating Kesten and Benjamini’s theorem for periodic trees.

Theorem 1 (Kesten, Benjamini, [BK95]). Consider a tree (T,0) with period v, such that
pe(T) < 5. Then P1 (S = Z) = 1.

Our main theorem provides a natural extension to this theorem.

Theorem 2. Let (T,0) be a connected locally finite tree such that pi'*(T) < 3. Then P(Ss =
=) =1.

The proof follows the same two steps as the proof by Kesten-Benjamini for periodic trees. The
proof is divided into two parts, firstly we show the finiteness of a certain sum and prove that
it implies our result, next we show that the sum is indeed finite. The key difference is that we
use different events to do the above computation which capture more than just the growth rate
of the tree.

Before we dive into the proof, we study site percolation on trees. Define the quantity,

T = sup {)\ : 3 non-zero flow # on the vertex set such that 0 < 6(v) < )\*‘”I}



Where flows on vertices is defined in a similar way as for edges, i.e. we have a root vertex o and
every vertex other than o satisfies flow conservation. Here |v| is the distance of v from o.

By max flow min cut theorem (which holds for countable locally finite graphs), we have that
NT = s inf — vl
br sup {)\ Hl_l[ 1;[)\ > 0}

where the infimum is over vertex cutsets II, i.e. II is a finite set of vertices such that o is not
connected to infinity in 7"\ II.

Lemma 3. For site percolation on T,

P, (0 ++ 00) < inf {Z Pl 11 is a (vertex) cutset separating o and oo}

vell
Proof. Since, {0 <> 0o} C |J {0 <> v} for all (vertex) cutsets II O
v€ell
We start by showing pit¢ > 1. Consider p > p. and \ = %, then by Lemma 1, for all (vertex)
brT

cutsets 11 "

S = 3

vell vell

So, brT > 1% for all p > p., which implies pSitc > b%T.
T

For bond percolation on the tree T, it is a famous theorem of Lyons that p2ond = ﬁ. Where
brT is the branching number of the tree. By the same argument, a similar statement is true in

our case. More specifically, we have:

Theorem 4. Consider site percolation a rooted, locally finite, connected tree T'. Then

; 1
pilte(T) ==
brl

We want to show the following theorem,

Theorem 5. Let T be a connected locally finite tree such that p.(T) < % Then P(Se = Z) = 1.

First, we start by setting up some notation: Let 7T, denote the set of vertices at distance n. For
a word 7, let n(™ = (1, ,9n).

(n)
For two vertices v,w € T and an infinite word 1 € =, we denote by v & w the event that

there exists a self-avoiding path v = vg ~ v] ~ - -+ ~ v,_; = w from v to w along which 7™ is

(n)
seen, i.e., such that w,, =n; for all i € {0,...,n—1}. We simply write {v <= w} := {v N w}

for the monochromatic word. For trees, since there is only one path between vertices, for clarity
we write (only for trees) v <5 w. We also write 2 > S (for a vertex 2 and set of vertices S) if
is a descendant of S. We are now ready to show Theorem 8.

Proof. Suppose b;T = 2+ 3¢ for some € > 0. Then by definition of the branching number there
exists a non-zero flow 6 such that 0 < 0(v) < (2 + 2¢)~". Fix this 0 and let its strength be
[16]| =6 > 0.



Define random variables,

Xu(n) =) (24¢)"0(v)1(0 <% v)

veT,
Also define the events,
Eyn(n) ={Xn(n) = 6}
It is clear that if E,(n) occurs the word 7™ must be seen from o. For the word 1 = (1,1, ---),
we set X, := X, (1) and E,, := E,(1).

Lemma 6. If > 2" ]P’1 (Ep \ Ent1) < 0o then all words are seen.
n>0

Proof. Firstly note that due to symmetry X,,(n) L Xy (1). Thus,

P (En<n) \ En+1(77)) (E \En-i-l) V77

1 P,
2 2

Now suppose that the sum is finite. Consider the events,

A, = {there exists 7"V such that E,(n) \ Eny1(n) holds}

We have, P(4,) = >_ IP%( w(m)\ Ent1(n)) = 2”+1P%(En \ Epn+1), the summability condition
D)
this implies that Z P(A,) <

n>0

Thus by Borel-Cantelli we get that P(A,, i.0.) = 0. So there exists N = N(w) such that
A, does not happen a.s. for n > N ie., for all n > N and for all n®*1) we have that,
En(n) \ Ent1(n) does not occur.

Now we show that for all n > 1, there is a (™ such that E, (1) occurs. Consider

ZX 222—1—5"6 1(o <5 v) 222—1—6"9 )1(0 < v)

n(n) nm) veTy vET, nn)

But Y 1(v <% w) = 1. So,
77(”)

S Xaln) = Y (2+2)0(0) = 62+ )"

1’](") veTy

If X,,(n7) < 6 for all n{™, then the LHS < §2", which is a contradiction. Thus there must exists
a 1™ such that E, (n) occurs. Let n > N, then by the above observation Ej, 4., (7™, (™)) must
also occur for any &, thus all words are seen from the generation n.

O]

Now we show that the sum under consideration is indeed finite, in the proof we use McDiarmid’s
inequality. We start by stating it:

Theorem 7 (McDiarmid’s Inequality). Let X,..., X, be independent random variables where

X; is X;-valued for all i, and let X = (X1,...,Xp). Assume f : Xy x -+ x X, = Risa
measurable function such that | D;f|lecc < 400  for alli. Then for all 5 > 0,

232
Pf(X) - E[f(X)] < —f] < exp <Z<HDf||2) '

3



Here, for x = (z1,x2, - xy,) the definition of D, f(x) is:

D;f(x) = sup f(x1,%2, .-, Y, Tit1, -+, Tn) — SUp f(x1, 22, Y, Tiv1,- -, Tn)-
YEXi y'Exi

Lemma 8. There exists ' > 0 and C > 0 such that P(E5 |E,) < exp(—=C(1+¢&")")

It is clear that this lemma implies the summability condition in Lemma 4, so proving Lemma
6 suffices.

Proof of Lemma 6. Fix a configuration on |J 7T; such that E, occurs. We show the above
<n

bound conditioned on this configuration. More formally, let P be the conditional measure given

E,,U = {uy,---u;} where U is the set of vertices in T, N C! such that Y (2 +¢)"0(u;) > 4.

1<i<k
Clearly, Xpi1= 5. (2+&)"™0(2)1(U + ) and thus E(X,;1) = %29(%)
|z|=n+1 i
z>U

Now, for each descendant of = of U in T},;1 consider the random variable (24 ¢)"*0(2)1(U +
r) < (24 &)""9(x). Then by McDiarmid’s inequality using f as the sum of these random
variables, we get that

23
PXpi1 —EXpn] < Bl <exp| ~ =75 | -
i " >i<n IDif 1%
Now,
4(2 4 ¢)+?
Di 2 < 2 2 n+1 2 2 n+1 2 < i
Do IDT R < 224+ 3T e @) < ST 3 o)
L |z|=n+1 <k
z>U
=27 9R(X,
@120 (Xnt1)
8(2+¢e)" -
=2 Rj(x,
(24 2e)n (K1)
For 8 = QL%E(X”H), by McDiarmid,
S \2=
5(x < 2 a0y _ <m) E(Xnt1) (2+2¢)"
< n1 S 5K ”+1>>—6Xp - 4(2 + &)t

Vv
(=2}
o
+
o

Since E(X,11)

- 2 )

- 2 - 1 e \? e \"
P(x E(X < - 1
< ni1 S 5B ”“)>—6Xp< 8(2+€) 5( +2+e>>

IN

Lcluster of o



Note that,
2
{Xn+1 > ]E(Xn+1)} = FEni1

2+4+¢
So,
- . 2 .
P(E,+1 does not occur) < P (Xn+1 < 2+II:?J(XnH)) <exp (—C (1+ &)™)
€
Where &' = 25? and we are done. O
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