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Abstract

Consider site percolation on a locally finite, connected graph G satisfying pc(G) < 1/2.
The percolation of words problem asks whether all binary sequences can almost surely be
embedded in site percolation configurations. Building on a result of Kesten and Benjamini
for periodic trees, we demonstrate this for all trees. This is joint work with Ritvik Radhakr-
ishnan.

1 Introduction

Consider Bernoulli site percolation on a graph G with psitec (G) < 1
2 . Let Ξ = {0, 1}N be the set of

all infinite binary sequences, referred to as the set of all words. We say that a word ξ ∈ Ξ is seen
from a vertex v ∈ V if there exists a path (infinite self-avoiding path) v = v0 ∼ v1 ∼ v2 ∼ · · ·
such that: ωi = ξi ∀i ≥ 0.

Define, the set of words seen from a vertex, S(v) = {ξ ∈ Ξ : ξ is seen from v}. We also define
the set of all words seen as S∞ =

⋃
v∈V S(v) = {ξ ∈ Ξ : ξ is seen from some v ∈ V }.

We want to study S∞. We operate on connected, locally finite, (rooted) trees (T, o) satisfying
psitec (T ) < 1

2 at p = 1
2 . Let us start by stating the main problem we are interested in:

Conjecture 1 (Classification Conjecture II.(c), [HdNS14]). Let G be an infinite graph, with
uniformly bounded degree, and psitec denote its critical threshold for site percolation. If psitec <
p < 1− psitec , then all sequences can be embedded, i.e., Pp(S∞ = Ξ) = 1

We start by stating Kesten and Benjamini’s theorem for periodic trees.

Theorem 1 (Kesten, Benjamini, [BK95]). Consider a tree (T, o) with period ν, such that
pc(T ) <

1
2 . Then P 1

2
(S∞ = Ξ) = 1.

Our main theorem provides a natural extension to this theorem.

Theorem 2. Let (T, o) be a connected locally finite tree such that psitec (T ) < 1
2 . Then P(S∞ =

Ξ) = 1.

The proof follows the same two steps as the proof by Kesten-Benjamini for periodic trees. The
proof is divided into two parts, firstly we show the finiteness of a certain sum and prove that
it implies our result, next we show that the sum is indeed finite. The key difference is that we
use different events to do the above computation which capture more than just the growth rate
of the tree.

Before we dive into the proof, we study site percolation on trees. Define the quantity,

∼
brT = sup

{
λ : ∃ non-zero flow θ on the vertex set such that 0 ≤ θ(v) ≤ λ−|v|

}
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Where flows on vertices is defined in a similar way as for edges, i.e. we have a root vertex o and
every vertex other than o satisfies flow conservation. Here |v| is the distance of v from o.

By max flow min cut theorem (which holds for countable locally finite graphs), we have that

∼
brT = sup

{
λ : inf

Π

∑
v∈Π

λ−|v| > 0

}

where the infimum is over vertex cutsets Π, i.e. Π is a finite set of vertices such that o is not
connected to infinity in T \Π.

Lemma 3. For site percolation on T ,

Pp(o↔∞) ≤ inf

{∑
v∈Π

p|v| : Π is a (vertex) cutset separating o and ∞

}

Proof. Since, {o↔∞} ⊆
⋃
v∈Π
{o↔ v} for all (vertex) cutsets Π

We start by showing psitec ≥ 1
∼

brT
. Consider p > pc and λ = 1

p , then by Lemma 1, for all (vertex)

cutsets Π ∑
v∈Π

λ−|v| =
∑
v∈Π

p|v| > 0

So,
∼

brT ≥ 1
p for all p > pc, which implies psitec ≥ 1

∼
brT

.

For bond percolation on the tree T , it is a famous theorem of Lyons that pbondc = 1
brT . Where

brT is the branching number of the tree. By the same argument, a similar statement is true in
our case. More specifically, we have:

Theorem 4. Consider site percolation a rooted, locally finite, connected tree T . Then

psitec (T ) =
1
∼

brT
.

We want to show the following theorem,

Theorem 5. Let T be a connected locally finite tree such that pc(T ) <
1
2 . Then P(S∞ = Ξ) = 1.

First, we start by setting up some notation: Let Tn denote the set of vertices at distance n. For
a word η, let η(n) = (η1, · · · , ηn).

For two vertices v, w ∈ T and an infinite word η ∈ Ξ, we denote by v
η(n)

←−→ w the event that
there exists a self-avoiding path v = v0 ∼ v1 ∼ · · · ∼ vn−1 = w from v to w along which η(n) is

seen, i.e., such that ωvi = ηi for all i ∈ {0, . . . , n−1}. We simply write {v ←→ w} := {v 1
(n)

←−→ w}
for the monochromatic word. For trees, since there is only one path between vertices, for clarity
we write (only for trees) v

η←→ w. We also write x ≥ S (for a vertex x and set of vertices S) if x
is a descendant of S. We are now ready to show Theorem 8.

Proof. Suppose
∼

brT = 2+3ε for some ε > 0. Then by definition of the branching number there
exists a non-zero flow θ such that 0 ≤ θ(v) ≤ (2 + 2ε)−n. Fix this θ and let its strength be
||θ|| = δ > 0.
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Define random variables,

Xn(η) =
∑
v∈Tn

(2 + ε)nθ(v)1(o
η←→ v)

Also define the events,
En(η) = {Xn(η) ≥ δ}

It is clear that if En(η) occurs the word η(n) must be seen from o. For the word 1 = (1, 1, · · · ),
we set Xn := Xn(1) and En := En(1).

Lemma 6. If
∑
n≥0

2n P 1
2
(En \ En+1) <∞ then all words are seen.

Proof. Firstly note that due to symmetry Xn(η)
(d)
= Xn(1). Thus,

P 1
2
(En(η) \ En+1(η)) = P 1

2
(En \ En+1) ∀η

Now suppose that the sum is finite. Consider the events,

An =
{
there exists η(n+1) such that En(η) \ En+1(η) holds

}
We have, P(An) =

∑
η(n+1)

P 1
2
(En(η) \En+1(η)) = 2n+1P 1

2
(En \En+1), the summability condition

this implies that
∑
n≥0

P(An) <∞.

Thus by Borel-Cantelli we get that P(An i.o.) = 0. So there exists N = N(ω) such that
An does not happen a.s. for n ≥ N i.e., for all n ≥ N and for all η(n+1) we have that,
En(η) \ En+1(η) does not occur.

Now we show that for all n ≥ 1, there is a η(n) such that En(η) occurs. Consider∑
η(n)

Xn(η) =
∑
η(n)

∑
v∈Tn

(2 + ε)nθ(v)1(o
η←→ v) =

∑
v∈Tn

∑
η(n)

(2 + ε)nθ(v)1(o
η←→ v)

But
∑
η(n)

1(v
η←→ w) = 1. So,

∑
η(n)

Xn(η) =
∑
v∈Tn

(2 + ε)nθ(v) = δ(2 + ε)n

If Xn(η) < δ for all η(n), then the LHS < δ2n, which is a contradiction. Thus there must exists
a η(n) such that En(η) occurs. Let n > N , then by the above observation En+m(η(n), ξ(m)) must
also occur for any ξ, thus all words are seen from the generation n.

Now we show that the sum under consideration is indeed finite, in the proof we use McDiarmid’s
inequality. We start by stating it:

Theorem 7 (McDiarmid’s Inequality). Let X1, . . . , Xn be independent random variables where
Xi is Xi-valued for all i, and let X = (X1, . . . , Xn). Assume f : X1 × · · · × Xn → R is a
measurable function such that ∥Dif∥∞ < +∞ for all i. Then for all β > 0,

P[f(X)− E[f(X)] ≤ −β] ≤ exp

(
− 2β2∑

i≤n ∥Dif∥2∞

)
.

3



Here, for x = (x1, x2, · · ·xn) the definition of Dif(x) is:

Dif(x) := sup
y∈χi

f(x1, x2, . . . , y, xi+1, . . . , xn)− sup
y′∈χi

f(x1, x2, . . . , y
′, xi+1, . . . , xn).

Lemma 8. There exists ε′ > 0 and C > 0 such that P(Ec
n+1|En) ≤ exp(−C(1 + ε′)n)

It is clear that this lemma implies the summability condition in Lemma 4, so proving Lemma
6 suffices.

Proof of Lemma 6. Fix a configuration on
⋃
i≤n

Ti such that En occurs. We show the above

bound conditioned on this configuration. More formally, let P̃ be the conditional measure given
En, U = {u1, · · ·uk} where U is the set of vertices in Tn ∩ C1 such that

∑
1≤i≤k

(2 + ε)nθ(ui) ≥ δ.

Clearly, Xn+1 =
∑

|x|=n+1
x≥U

(2 + ε)n+1θ(x)1(U ←→ x) and thus Ẽ(Xn+1) =
(2+ε)n+1

2

∑
i
θ(ui).

Now, for each descendant of x of U in Tn+1 consider the random variable (2+ ε)n+1θ(x)1(U ←→
x) ≤ (2 + ε)n+1θ(x). Then by McDiarmid’s inequality using f as the sum of these random
variables, we get that

P[Xn+1 − E[Xn+1] ≤ −β] ≤ exp

(
− 2β2∑

i≤n ∥Dif∥2∞

)
.

Now, ∑
i

∥Dif∥2∞ ≤ (2(2 + ε)n+1)2
∑

|x|=n+1
x≥U

(2 + ε)n+1θ(x)2 ≤ 4(2 + ε)2n+2

(2 + 2ε)n

∑
i≤k

θ(ui)

=
4 (2 + ε)n+1

(2 + 2ε)n
· 2 Ẽ(Xn+1)

=
8 (2 + ε)n+1

(2 + 2ε)n
Ẽ(Xn+1)

For β = ε
2+ε Ẽ(Xn+1), by McDiarmid,

P̃
(
Xn+1 ≤

2

2 + ε
Ẽ(Xn+1)

)
≤ exp

−
(

ε
2+ε

)2
Ẽ(Xn+1) (2 + 2ε)n

4 (2 + ε)n+1

 .

Since Ẽ(Xn+1) ≥ δ (2+ε)
2 ,

P̃
(
Xn+1 ≤

2

2 + ε
Ẽ(Xn+1)

)
≤ exp

(
−1

8

(
ε

2 + ε

)2

δ

(
1 +

ε

2 + ε

)n
)

= exp

(
−C

(
1 +

ε

2 + ε

)n)
.

1cluster of o
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Note that, {
Xn+1 ≥

2

2 + ε
Ẽ(Xn+1)

}
=⇒ En+1

So,

P̃(En+1 does not occur) ≤ P̃
(
Xn+1 ≤

2

2 + ε
Ẽ(Xn+1)

)
≤ exp

(
−C

(
1 + ε′

)n)
Where ε′ = ε

2+ε and we are done.
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