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Abstract

This article documents progress on the problem of percolation of words. Joint work with
Ritvik Radhakrishnan.
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1 Introduction

Consider Bernoulli site percolation on a graph G with psitec (G) < 1
2 . Let Ξ = {0, 1}N be the set of

all infinite binary sequences, referred to as the set of all words. We say that a word ξ ∈ Ξ is seen
from a vertex v ∈ V if there exists a path (infinite self-avoiding path) v = v0 ∼ v1 ∼ v2 ∼ · · ·
such that: ωi = ξi ∀i ≥ 0.

Define, the set of words seen from a vertex, S(v) = {ξ ∈ Ξ : ξ is seen from v}. We also define
the set of all words seen as S∞ =

⋃
v∈V S(v) = {ξ ∈ Ξ : ξ is seen from some v ∈ V }.

We want to study S∞. We operate on locally finite, connected graphs G with psitec (G) < 1
2 at

p = 1
2 . Let us start by stating the main problem we are interested in:

Conjecture 1 (Classification Conjecture II.(c), [HdNS14]). Let G be an infinite graph, with
uniformly bounded degree, and psitec denote its critical threshold for site percolation. If psitec <
p < 1− psitec , then all sequences can be embedded, i.e., Pp(S∞ = Ξ) = 1

The goal of this project is to show the above in the case of transitive (or maybe general) non-
amenable graphs. Before diving into non-amenability lets start by noting some past results.

1.1 Past Results

Theorem 1 (Kesten, Benjamini, [BK95]). Consider site percolation on G = Zd for d ≥ 10,
then P 1

2
(S∞ = Ξ) = 1.

It is known that psitec (Zd) < 1
2 for d ≥ 3, so its natural to ask if the above holds for Z3. This

was shown in [NTT22].
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Theorem 2 (Nolin, Tassion, Teixeira, [NTT22]). Consider site percolation on G = Zd for
d ≥ 3, then P 1

2
(S∞ = Ξ) = 1.

Even though Theorem 2 trivially implies Theorem 1, we chose to state them separately due to
huge differences in the difficulty of proof. This highlights one of the reasons why Conjecture 1
may be easier to show than the general case.

Theorem 3 (Kesten, Sidoravicius, Zhang, [KSZ01]). Let Z2
cp be the closed-packed lattice ob-

tained by adding diagonal edges to each face of Z2. Then P 1
2
(S∞ = Ξ) = 1.

2 Percolation of words beyond Zd

2.1 Percolation of words on trees

We start by stating Kesten and Benjamini’s theorem for periodic trees.

Theorem 4 (Kesten, Benjamini, [BK95]). Consider a tree T with period ν, such that pc(T ) <
1
2 .

Then P 1
2
(S∞ = Ξ) = 1.

Recently, we managed to generalize the above theorem to cover all trees with pc(T ) < 1
2 . In

particular we have,

Theorem 5. Let (T, o) be a connected locally finite tree such that psitec (T ) < 1
2 . Then P(S∞ =

Ξ) = 1.

The proof follows the same two steps as the proof by Kesten-Benjamini for periodic trees. The
proof is divided into two parts, firstly we show the finiteness of a certain sum and prove that
it implies our result, next we show that the sum is indeed finite. The key difference is that we
use different events to do the above computation which capture more than just the growth rate
of the tree.

Before we dive into the proof, we study site percolation on trees. Define the quantity,

∼
brT = sup

{
λ : ∃ non-zero flow θ on the vertex set such that 0 ≤ θ(v) ≤ λ−|v|

}
Where flows on vertices is defined in a similar way as for edges, i.e. we have a root vertex o and
every vertex other than o satisfies flow conservation. Here |v| is the distance of v from o.

By max flow min cut theorem (which holds for countable locally finite graphs), we have that

∼
brT = sup

{
λ : inf

Π

∑
v∈Π

λ−|v| > 0

}

where the infimum is over vertex cutsets Π, i.e. Π is a finite set of vertices such that o is not
connected to infinity in T \Π.

Lemma 6. For site percolation on T ,

Pp(o↔∞) ≤ inf

{∑
v∈Π

p|v| : Π is a (vertex) cutset separating o and ∞

}

Proof. Since, {o↔∞} ⊆
⋃
v∈Π
{o↔ v} for all (vertex) cutsets Π
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We start by showing psitec ≥ 1
∼

brT
. Consider p > pc and λ = 1

p , then by Lemma 1, for all (vertex)

cutsets Π ∑
v∈Π

λ−|v| =
∑
v∈Π

p|v| > 0

So,
∼

brT ≥ 1
p for all p > pc, which implies psitec ≥ 1

∼
brT

.

For bond percolation on the tree T , it is a famous theorem of Lyons that pbondc = 1
brT . Where

brT is the branching number of the tree. By the same argument, a similar statement is true in
our case. More specifically, we have:

Theorem 7. Consider site percolation a rooted, locally finite, connected tree T . Then

psitec (T ) =
1
∼

brT
.

We want to show the following theorem,

Theorem 8. Let T be a connected locally finite tree such that pc(T ) <
1
2 . Then P(S∞ = Ξ) = 1.

First, we start by setting up some notation: Let Tn denote the set of vertices at distance n. For
a word η, let η(n) = (η1, · · · , ηn).

For two vertices v, w ∈ T and an infinite word η ∈ Ξ, we denote by v
η(n)

←−→ w the event that
there exists a self-avoiding path v = v0 ∼ v1 ∼ · · · ∼ vn−1 = w from v to w along which η(n) is

seen, i.e., such that ωvi = ηi for all i ∈ {0, . . . , n−1}. We simply write {v ←→ w} := {v 1
(n)

←−→ w}
for the monochromatic word. For trees, since there is only one path between vertices, for clarity
we write (only for trees) v

η←→ w. We also write x ≥ S (for a vertex x and set of vertices S) if x
is a descendant of S. We are now ready to show Theorem 8.

Proof. Suppose
∼

brT = 2+3ε for some ε > 0. Then by definition of the branching number there
exists a non-zero flow θ such that 0 ≤ θ(v) ≤ (2 + 2ε)−n. Fix this θ and let its strength be
||θ|| = δ > 0.

Define random variables,

Xn(η) =
∑
v∈Tn

(2 + ε)nθ(v)1(o
η←→ v)

Also define the events,
En(η) = {Xn(η) ≥ δ}

It is clear that if En(η) occurs the word η(n) must be seen from o. For the word 1 = (1, 1, · · · ),
we set Xn := Xn(1) and En := En(1).

Lemma 9. If
∑
n≥0

2n P 1
2
(En \ En+1) <∞ then all words are seen.

Proof. Firstly note that due to symmetry Xn(η)
(d)
= Xn(1). Thus,

P 1
2
(En(η) \ En+1(η)) = P 1

2
(En \ En+1) ∀η

Now suppose that the sum is finite. Consider the events,

An =
{
there exists η(n+1) such that En(η) \ En+1(η) holds

}
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We have, P(An) =
∑

η(n+1)

P 1
2
(En(η) \En+1(η)) = 2n+1P 1

2
(En \En+1), the summability condition

this implies that
∑
n≥0

P(An) <∞.

Thus by Borel-Cantelli we get that P(An i.o.) = 0. So there exists N = N(ω) such that
An does not happen a.s. for n ≥ N i.e., for all n ≥ N and for all η(n+1) we have that,
En(η) \ En+1(η) does not occur.

Now we show that for all n ≥ 1, there is a η(n) such that En(η) occurs. Consider∑
η(n)

Xn(η) =
∑
η(n)

∑
v∈Tn

(2 + ε)nθ(v)1(o
η←→ v) =

∑
v∈Tn

∑
η(n)

(2 + ε)nθ(v)1(o
η←→ v)

But
∑
η(n)

1(v
η←→ w) = 1. So,

∑
η(n)

Xn(η) =
∑
v∈Tn

(2 + ε)nθ(v) = δ(2 + ε)n

If Xn(η) < δ for all η(n), then the LHS < δ2n, which is a contradiction. Thus there must exists
a η(n) such that En(η) occurs. Let n > N , then by the above observation En+m(η(n), ξ(m)) must
also occur for any ξ, thus all words are seen from the generation n.

Now we show that the sum under consideration is indeed finite, in the proof we use McDiarmid’s
inequality. We start by stating it:

Theorem 10 (McDiarmid’s Inequality). Let X1, . . . , Xn be independent random variables where
Xi is Xi-valued for all i, and let X = (X1, . . . , Xn). Assume f : X1×· · ·×Xn → R is a measurable
function such that ∥Dif∥∞ < +∞ for all i. Then for all β > 0,

P[f(X)− E[f(X)] ≤ −β] ≤ exp

(
− 2β2∑

i≤n ∥Dif∥2∞

)
.

Here, for x = (x1, x2, · · ·xn) the definition of Dif(x) is:

Dif(x) := sup
y∈χi

f(x1, x2, . . . , y, xi+1, . . . , xn)− sup
y′∈χi

f(x1, x2, . . . , y
′, xi+1, . . . , xn).

Lemma 11. There exists ε′ > 0 and C > 0 such that P(Ec
n+1|En) ≤ exp(−C(1 + ε′)n)

It is clear that this lemma implies the summability condition in Lemma 4, so proving Lemma
6 suffices.

Proof of Lemma 6. Fix a configuration on
⋃
i≤n

Ti such that En occurs. We show the above

bound conditioned on this configuration. More formally, let P̃ be the conditional measure given
En, U = {u1, · · ·uk} where U is the set of vertices in Tn ∩ C1 such that

∑
1≤i≤k

(2 + ε)nθ(ui) ≥ δ.

Clearly, Xn+1 =
∑

|x|=n+1
x≥U

(2 + ε)n+1θ(x)1(U ←→ x) and thus Ẽ(Xn+1) =
(2+ε)n+1

2

∑
i
θ(ui).

1cluster of o
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Now, for each descendant of x of U in Tn+1 consider the random variable (2+ ε)n+1θ(x)1(U ←→
x) ≤ (2 + ε)n+1θ(x). Then by McDiarmid’s inequality using f as the sum of these random
variables, we get that

P[Xn+1 − E[Xn+1] ≤ −β] ≤ exp

(
− 2β2∑

i≤n ∥Dif∥2∞

)
.

Now, ∑
i

∥Dif∥2∞ ≤ (2(2 + ε)n+1)2
∑

|x|=n+1
x≥U

(2 + ε)n+1θ(x)2 ≤ 4(2 + ε)2n+2

(2 + 2ε)n

∑
i≤k

θ(ui)

=
4 (2 + ε)n+1

(2 + 2ε)n
· 2 Ẽ(Xn+1)

=
8 (2 + ε)n+1

(2 + 2ε)n
Ẽ(Xn+1)

For β = ε
2+ε Ẽ(Xn+1), by McDiarmid,

P̃
(
Xn+1 ≤

2

2 + ε
Ẽ(Xn+1)

)
≤ exp

−
(

ε
2+ε

)2
Ẽ(Xn+1) (2 + 2ε)n

4 (2 + ε)n+1

 .

Since Ẽ(Xn+1) ≥ δ (2+ε)
2 ,

P̃
(
Xn+1 ≤

2

2 + ε
Ẽ(Xn+1)

)
≤ exp

(
−1

8

(
ε

2 + ε

)2

δ

(
1 +

ε

2 + ε

)n
)

= exp

(
−C

(
1 +

ε

2 + ε

)n)
.

Note that, {
Xn+1 ≥

2

2 + ε
Ẽ(Xn+1)

}
=⇒ En+1

So,

P̃(En+1 does not occur) ≤ P̃
(
Xn+1 ≤

2

2 + ε
Ẽ(Xn+1)

)
≤ exp

(
−C

(
1 + ε′

)n)
Where ε′ = ε

2+ε and we are done.

2.2 Perturbative result

Definition 12 (Non-amenability). The Cheeger constant ΦV is defined as:

ΦV = inf

{
|∂S|
|S|

: S ⊂ V, S finite, connected

}
A graph is called non-amenable if ΦV > 0.

For instance, d−regular trees are non-amenable for d ≥ 3.

Using a theorem of Benjamini and Schramm one can show that all words are seen for non-
amenable graphs with ΦV ≥ 2. Consider the following theorem,
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Theorem 13 (Benjamini-Schramm, [BS97]). Let G be a locally finite graph with Cheeger con-
stant ΦV ≥ 2. Then G contains Tn+1, where Tn+1 is a tree where the root has degree n and all
other vertices have degree n+ 2.

In particular since pc(Tn+1) = 1
n+1 , this implies our result for a non-amenable graph with

ΦV ≥ 2.

Question: Let G be a non-amenable, transitive graph, and suppose pc(G) < 1
2 . Can we find a

tree T such that pc(T ) <
1
2?

2.3 The truncation problem

A closely related problem to the problem of percolation of words is the so-called truncation
problem. Which says the following:

Truncation Problem: LetG = (V,E) be an infinite connected locally finite graph (not necessarily
with psitec < 1

2). Then for any p ∈ (0, 1) there exists a N = N(p) such that Pp(S
N
ξ ) = 1 ∀ ξ.

Where SN
ξ =

{
ω : ξ is seen in ω for the graph GN

}
, and GN is the N -fuzz of the graph G, i.e.,

GN = (V,EN ) where EN = {{x, y} : 1 ≤ distG(x, y) ≤ N}. This was shown by B.N.B de Lima
in [dL08] for Zd. We now show a simple proof for all non-amenable graphs.

First, define SN
ξ (v) =

{
ω : ξ is seen at v in ω for the graph GN

}
. Then clearly,

SN
ξ = ∪

v∈V
SN
ξ (v)

.

An important ingredient in the proof will be Weirman’s coupling (taken from [dL08]):

Theorem 14 (Weirman’s coupling). Consider independent site percolation with parameter p ∈
[0, 1] on the graph G. Then, for any binary sequence ξ ∈ {0, 1}N and any vertex v0 ∈ V , it holds
that:

Pp(Sξ(v0)) ≥ min{Pp(S0(v0)), Pp(S1(v0))}, ∀ξ ∈ {0, 1}N.

We want to show:

Theorem 15. Consider site percolation on a non-amenable graph G. For every p ∈ (0, 1),
there exists a positive integer N = N(p) and a constant c > 0 such that

Pp(S
N
ξ (v)) > c, ∀ξ ∈ {0, 1}N.

In particular,
Pp(S

N
ξ ) = 1, ∀ξ ∈ {0, 1}N.

Consider the following two lemmas:

Lemma 16. Let G be a non-amenable graph with Cheeger constant Φv(G) then,

Φv(G
N ) ≥ NΦv(G).

Lemma 17. For any graph G,

psitec (G) ≤ 1

1 + Φv(G)
.

Let’s start by showing that they imply Theorem 15.
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Proof. Fix a p ∈ (0, 1). These two lemmas combined give us that:

∃N = N(p) such that psitec (GN ) < min{p, 1− p}.

If that is the case, then

Pp(S
N
1
) > 0 and Pp(S

N
0 ) > 0

and thus by Weimann’s coupling:

Pp(S
N
ξ ) > 0 ∀ξ.

Since SN
ξ are all translation-invariant,

Pp(S
N
ξ ) = 1 ∀ξ.

This shows the truncation problem.

Let’s now prove Lemma 16, for the proof of Lemma 17 see [LP17].

Proof of Lemma 16. Let S be a set of vertices, and let ∂i(S) denote the set of vertices not in S
at a distance i from S (in G). Since, |∂1(S)| ≥ ΦV (G)|S| we have

|∂2(S)| = |∂1 (∂1(S) ∪ S) | ≥ Φv(G)(|S|+ |∂1(S)|) ≥ ΦV (G)|S|+ (ΦV (G))2|S|

In general,

|∂i(S)| = |∂1(S ∪ ∂i−1(S))| ≥ ΦV (G)(|S|+ |∂i−1(S)|) ≥ ΦV (G)|S|+ΦV (G)|∂i−1(S)|

≥
∑

1≤j≤i

(ΦV (G))j |S| = |S|ΦV (G)

(
1− (ΦV (G))i

1− ΦV (G)

)
≥ |S|ΦV (G)

Now in GN ,

|∂GN (S)| =
∑
i≤N

|∂i(S)| ≥
∑
i≤N

ΦV (G)|S| = NΦV (G)|S|

Remark. The only thing we need to show, to prove the truncation problem is to show, pc(G
N )→

0 as N →∞. This leads to the following question:

Question: If pc(G) < 1, then does pc(G
N )→ 0 as N →∞?

Using the methods of [MS19] we can show that for some N , pc(G
N ) < pc(G), but the gap

between the two critical thresholds is exponentially bad and so this is not sufficient.

References

[BK95] Itai Benjamini and Harry Kesten. Percolation of arbitrary words in {0, 1} n. The
Annals of Probability, pages 1024–1060, 1995.

[BS97] Itai Benjamini and Oded Schramm. Every graph with a positive cheeger constant
contains a tree with a positive cheeger constant. Geometric & Functional Analysis
GAFA, 7(3):403–419, 1997.

7



[dL08] Bernardo NB de Lima. A note about the truncation question in percolation of words.
2008.

[HdNS14] M.R. Hilário, B.N.B. de Lima, P. Nolin, and V. Sidoravicius. Embedding binary
sequences into bernoulli site percolation on z3. Stochastic Processes and their Appli-
cations, 124(12):4171–4181, 2014.

[KSZ01] Harry Kesten, Vladas Sidoravicius, and Yu Zhang. Percolation of arbitrary words on
the close-packed graph of zˆ2. 2001.

[LP17] Russell Lyons and Yuval Peres. Probability on trees and networks, volume 42. Cam-
bridge University Press, 2017.
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