Percolation of Words

Ishaan Bhadoo

Abstract

This article documents progress on the problem of percolation of words. Joint work with
Ritvik Radhakrishnan.

Contents

1 Introduction 1
1.1 Past Results . . . . . . . . . 1

2 Percolation of words beyond Z¢ 2
2.1 Percolation of words on trees . . . . . . . . . ... 2
2.2 Perturbative result . . . . . . . ..o 5
2.3 The truncation problem . . . . . . . ... Lo L o 6

1 Introduction

Consider Bernoulli site percolation on a graph G with pfi**(G) < 3. Let = = {0, 1}" be the set of
all infinite binary sequences, referred to as the set of all words. We say that a word & € = is seen
from a vertex v € V if there exists a path (infinite self-avoiding path) v = vg ~ vy ~ vy ~ - -

such that: w; =¢& Vi > 0.

Define, the set of words seen from a vertex, S(v) = {£ € Z: £ is seen from v}. We also define
the set of all words seen as Soo = (J ey S(v) = {§ € E: £ is seen from some v € V'}.

We want to study S... We operate on locally finite, connected graphs G with pfi*®(G) < % at
p= % Let us start by stating the main problem we are interested in:

Conjecture 1 (Classification Conjecture II.(c), [HANS14]). Let G be an infinite graph, with
uniformly bounded degree, and ps'® denote its critical threshold for site percolation. If psit¢ <
p < 1—ps, then all sequences can be embedded, i.e., Py(Soo = E) = 1

The goal of this project is to show the above in the case of transitive (or maybe general) non-
amenable graphs. Before diving into non-amenability lets start by noting some past results.

1.1 Past Results

Theorem 1 (Kesten, Benjamini, [BK95]). Consider site percolation on G = Z¢ for d > 10,
then P1 (S = E) = 1.
2

It is known that pfi*®(Z?) < 1 for d > 3, so its natural to ask if the above holds for Z3. This

C

was shown in [NTT22].



Theorem 2 (Nolin, Tassion, Teixeira, [NTT22]). Consider site percolation on G = Z2 for
d>3, thenP1(Seo =2) = 1.
2

Even though Theorem 2 trivially implies Theorem 1, we chose to state them separately due to
huge differences in the difficulty of proof. This highlights one of the reasons why Conjecture 1
may be easier to show than the general case.

Theorem 3 (Kesten, Sidoravicius, Zhang, [KSZ01]). Let Z2, be the closed-packed lattice ob-
tained by adding diagonal edges to each face of Z2. Then P1(Sy = Z) = 1.
2

2 Percolation of words beyond Z¢

2.1 Percolation of words on trees
We start by stating Kesten and Benjamini’s theorem for periodic trees.

Theorem 4 (Kesten, Benjamini, [BK95]). Consider a tree T with period v, such that p.(T) <
Then P1(Seo = E) = 1.
2

D=

Recently, we managed to generalize the above theorem to cover all trees with p.(T) < % In
particular we have,

Theorem 5. Let (T,0) be a connected locally finite tree such that pi*(T) < 3. Then P(Ss =
Z)=1.

The proof follows the same two steps as the proof by Kesten-Benjamini for periodic trees. The
proof is divided into two parts, firstly we show the finiteness of a certain sum and prove that
it implies our result, next we show that the sum is indeed finite. The key difference is that we
use different events to do the above computation which capture more than just the growth rate
of the tree.

Before we dive into the proof, we study site percolation on trees. Define the quantity,

T = sup {)\ : 3 non-zero flow # on the vertex set such that 0 < f(v) < A“”'}

Where flows on vertices is defined in a similar way as for edges, i.e. we have a root vertex o and
every vertex other than o satisfies flow conservation. Here |v| is the distance of v from o.

By max flow min cut theorem (which holds for countable locally finite graphs), we have that
b T = o [l
rT Sup{)\ 1I1_1[fZ)\ >O}
vell

where the infimum is over vertex cutsets II, i.e. II is a finite set of vertices such that o is not
connected to infinity in 7"\ II.

Lemma 6. For site percolation on T,
P, (0 <+ 00) < inf {Z PPl 10 is a (vertex) cutset separating o and oo}
vell

Proof. Since, {0 <> 0o} C |J {0 <> v} for all (vertex) cutsets II O
vell



We start by showing p$it® > 1. Consider p > p, and A = 1, then by Lemma 1, for all (vertex)

brT p

SOAR =3 gl s

vell vell

cutsets 11

So, brT > % for all p > p., which implies psi*® > ﬁ.
T

For bond percolation on the tree T, it is a famous theorem of Lyons that pgond = b%T. Where
br’T' is the branching number of the tree. By the same argument, a similar statement is true in

our case. More specifically, we have:

Theorem 7. Consider site percolation a rooted, locally finite, connected tree T'. Then

; 1
p*(T) = —.
brT

We want to show the following theorem,

Theorem 8. Let T be a connected locally finite tree such that po(T) < 3. Then P(Se = Z) = 1.

First, we start by setting up some notation: Let T}, denote the set of vertices at distance n. For
a word 7, let n(™ = (91, ny).

(n)
For two vertices v,w € T and an infinite word n € Z, we denote by v & w the event that

there exists a self-avoiding path v = vg ~ v] ~ -+ ~ v, = w from v to w along which 7™ is

seen, i.e., such that w,, =n; for all i € {0,...,n—1}. We simply write {v <= w} := {v LA w}
for the monochromatic word. For trees, since there is only one path between vertices, for clarity
we write (only for trees) v <& w. We also write 2 > S (for a vertex z and set of vertices S) if =
is a descendant of S. We are now ready to show Theorem 8.

Proof. Suppose br’T' = 2 + 3¢ for some ¢ > 0. Then by definition of the branching number there
exists a non-zero flow # such that 0 < f(v) < (2 + 2¢)~". Fix this 0 and let its strength be
[16]| =6 > 0.

Define random variables,

Xu(n) = > (2+)"0(v)1(0 > v)

veT,
Also define the events,
En(n) = {Xn(n) = 6}

It is clear that if E,(n) occurs the word n™ must be seen from o. For the word 1 = (1,1, ),
we set X, := X, (1) and E, := E,(1).
Lemma 9. If Y 2" P1(E, \ Eny1) < 0o then all words are seen.

n>0 2

d
Proof. Firstly note that due to symmetry X,,(n) @ X,(1). Thus,

P (En(n) \ En+1(77)) =P

[N

Now suppose that the sum is finite. Consider the events,

Ay, = {there exists 7™ such that E, () \ Ens1(n) holds}



We have, P(4,) = > IP’%( w(M)\ Ent1(n)) = 2”+1]P’%(En \ Epn+1), the summability condition
p(n+1)
this implies that Z P(A,) <

n>0

Thus by Borel-Cantelli we get that P(A, i.0.) = 0. So there exists N = N(w) such that
A, does not happen a.s. for n > N ie., for all n > N and for all n®*) we have that,
E,(n) \ En+1(n) does not occur.

Now we show that for all n > 1, there is a 7™ such that E,(n) occurs. Consider

ZXn(n):Z 2(24—5)”0(@ 0 <% v) 2224—5"9 Y1 (o <% v)

17(") 17(”) veTy veTy, 17(71)

But 3 1(v <% w) = 1. So,
77(”)

Y Xum =) (2+2)"(v) =52 +e)"

n(n) veTy

If X,,(n7) < 6 for all n{™, then the LHS < §2", which is a contradiction. Thus there must exists
a 1™ such that E,(n) occurs. Let n > N, then by the above observation Ej, 4, (7™, £(™)) must
also occur for any &, thus all words are seen from the generation n.

O]

Now we show that the sum under consideration is indeed finite, in the proof we use McDiarmid’s
inequality. We start by stating it:

Theorem 10 (McDiarmid’s Inequality). Let X1, ..., X, be independent random variables where
X is Xj-valued for alli, and let X = (X1,...,X,). Assume f: X1 x---x X, — R is a measurable
function such that ||D;f|lcc < 400 for alli. Then for all B > 0,

232
PLfA(X) = E[f(X)] < =f] < exp <_Z-<HDJH2) '

Here, for x = (x1,x2, -+ xy,) the definition of D;f(x) is

D;f(x) :=sup f(x1,T2, - Y, Tit1,--->Tn) — SUp f(x1,20,.. .,y Tizx1,- o, Tn).
YEXi y'EX:

Lemma 11. There exists ¢’ > 0 and C > 0 such that P(ES, |E,) < exp(—C(1+¢")")

It is clear that this lemma implies the summability condition in Lemma 4, so proving Lemma
6 suffices.

Proof of Lemma 6. Fix a configuration on |J 7; such that E, occurs. We show the above
i<n
bound conditioned on this configuration. More formally, let P be the conditional measure given

E,,U = {uy,---u;} where U is the set of vertices in T, N C! such that > (2 +¢)"0(u;) > 0.
1<i<k

Clearly, X, 1 = Y. (24 ¢)"™0(2)1(U + z) and thus E(X,,;1) = (2+E )" Ee(ul)
|z|=n+1
z>U

Lcluster of o



Now, for each descendant of = of U in T},41 consider the random variable (24 ¢)" "0 (2)1(U +
x) < (2 +¢)""9(z). Then by McDiarmid’s inequality using f as the sum of these random
variables, we get that

232
PXnt1 — ElXne] < =6 < exp <_E\|Df|!> |

Now,

4(2 +¢)?nt2

(2 +2e)" Z 6(ui)

D OIDifll < 224" > (246" 0(@)? <
) |z|=n+1
z>U

B 4 (2 + €)n+1

(2 + 26)” 2 INE(XTL+1)

€ n+1l _
- 8((22122-)71 (Kit1)

For 8 = 3= E(Xp11), by McDiarmid,

(2) B Xu) 2+ 20"
4(24¢)ntt

Note that,
2 .
X > —E(X — F
{ n+l = 24 ¢ ( n+1)} n+1

So,

. - 2 .

P(E,+1 does not occur) < P <Xn+1 < 2+E(Xn+1)> < exp (—C (1 + 8/)”)

€

Where ¢/ = £ and we are done. O

2+e

2.2 Perturbative result

Definition 12 (Non-amenability). The Cheeger constant @y is defined as:

®y = inf {||85ﬁ| S CV, S finite, connected}

A graph is called non-amenable if @y > 0.
For instance, d—regular trees are non-amenable for d > 3.

Using a theorem of Benjamini and Schramm one can show that all words are seen for non-
amenable graphs with ®y > 2. Consider the following theorem,



Theorem 13 (Benjamini-Schramm, [BS97]). Let G be a locally finite graph with Cheeger con-
stant @y > 2. Then G contains Ty, 11, where Ty,+1 is a tree where the root has degree n and all
other vertices have degree n + 2.

1

747, this implies our result for a non-amenable graph with

In particular since pq(Tp4+1) =
Py > 2.

Question: Let G be a non-amenable, transitive graph, and suppose p.(G) < % Can we find a
tree 1" such that pe(T) < 37

2.3 The truncation problem

A closely related problem to the problem of percolation of words is the so-called truncation
problem. Which says the following:

Truncation Problem: Let G = (V, E') be an infinite connected locally finite graph (not necessarily
with pii < 1). Then for any p € (0, 1) there exists a N = N(p) such that IP’p(SéV) =1V¢.

Where Sév = {w : € is seen in w for the graph GN} , and GV is the N-fuzz of the graph G, i.e.,
GN = (V,EN) where EN = {{x,y} : 1 < distg(x,y) < N}. This was shown by B.N.B de Lima
in [dLO8] for Z¢. We now show a simple proof for all non-amenable graphs.

First, define Sév (v) = {w: & is seen at v in w for the graph GV} . Then clearly,

An important ingredient in the proof will be Weirman’s coupling (taken from [dLOS8]):

Theorem 14 (Weirman’s coupling). Consider independent site percolation with parameter p €
[0,1] on the graph G. Then, for any binary sequence & € {0, 1} and any vertex vy € V, it holds
that:

Py(Se(vo)) > min{P,(So(vo)), Fp(S1(vo))}, V€ € {0,1}".

We want to show:

Theorem 15. Consider site percolation on a non-amenable graph G. For every p € (0,1),
there exists a positive integer N = N(p) and a constant ¢ > 0 such that

Py(S¥ () > ¢, V€€ {0, 1},

In particular,
Bp(S8) =1, v¢e{o, 13N,

Consider the following two lemmas:

Lemma 16. Let G be a non-amenable graph with Cheeger constant ®,(G) then,
B, (GY) > ND,(G).

Lemma 17. For any graph G,

. 1
site <
P (G) < 1+ ®,(G)’

Let’s start by showing that they imply Theorem 15.



Proof. Fix a p € (0,1). These two lemmas combined give us that:

3N = N(p) such that pfi**(G™) < min{p,1 — p}.

If that is the case, then

P,(SY)>0 and P,(S{) >0

and thus by Weimann’s coupling:

Py(S&) >0 Ve

Since Sév are all translation-invariant,

Bp(SY) =1 V¢

This shows the truncation problem.

Let’s now prove Lemma 16, for the proof of Lemma 17 see [LP17].

Proof of Lemma 16. Let S be a set of vertices, and let 0;(.5) denote the set of vertices not in S
at a distance i from S (in G). Since, |01(S)| > @y (G)|S| we have

[02(8)] = 101 (91(S) U S) | = @u(G)(IS] +101(S)]) = @v(G)IS| + (@ (G))?[S]

In general,

10i(S)] = [01(S U 9i-1(9))| = @v(G)(|S] + [0i-1(5)]) = ®v(G)|S] + Pv(G)|0i-1(5)]

> > (@v(@)YIS] = ISy (G) <11—<<Zvv<(cg;>)>

) > 151%v(G)

Now in GV,
0an (S)] =D _10i(S)| = D _@v(G)|S| = Nov(G)[S]
i<N i<N

Remark. The only thing we need to show, to prove the truncation problem is to show, p.(G™) —
0 as N — oo. This leads to the following question:

Question: If p.(G) < 1, then does p.(GV) — 0 as N — 00?

Using the methods of [MS19] we can show that for some N, p.(GY) < p.(G), but the gap
between the two critical thresholds is exponentially bad and so this is not sufficient.

O]
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