

Last time : Step ① $N \in \{0, 1, \infty\}$

Step ② : Rule out $N = \infty$

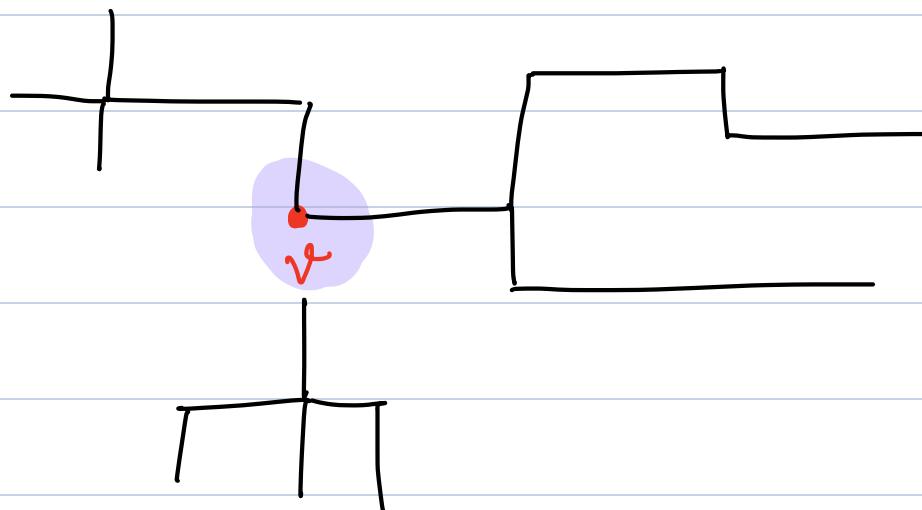
Burton and Keane

$$P_p(N = \infty), p \in (0, 1)$$

Defⁿ : A vertex $v \in \mathbb{Z}^d$ is called an encounter point if

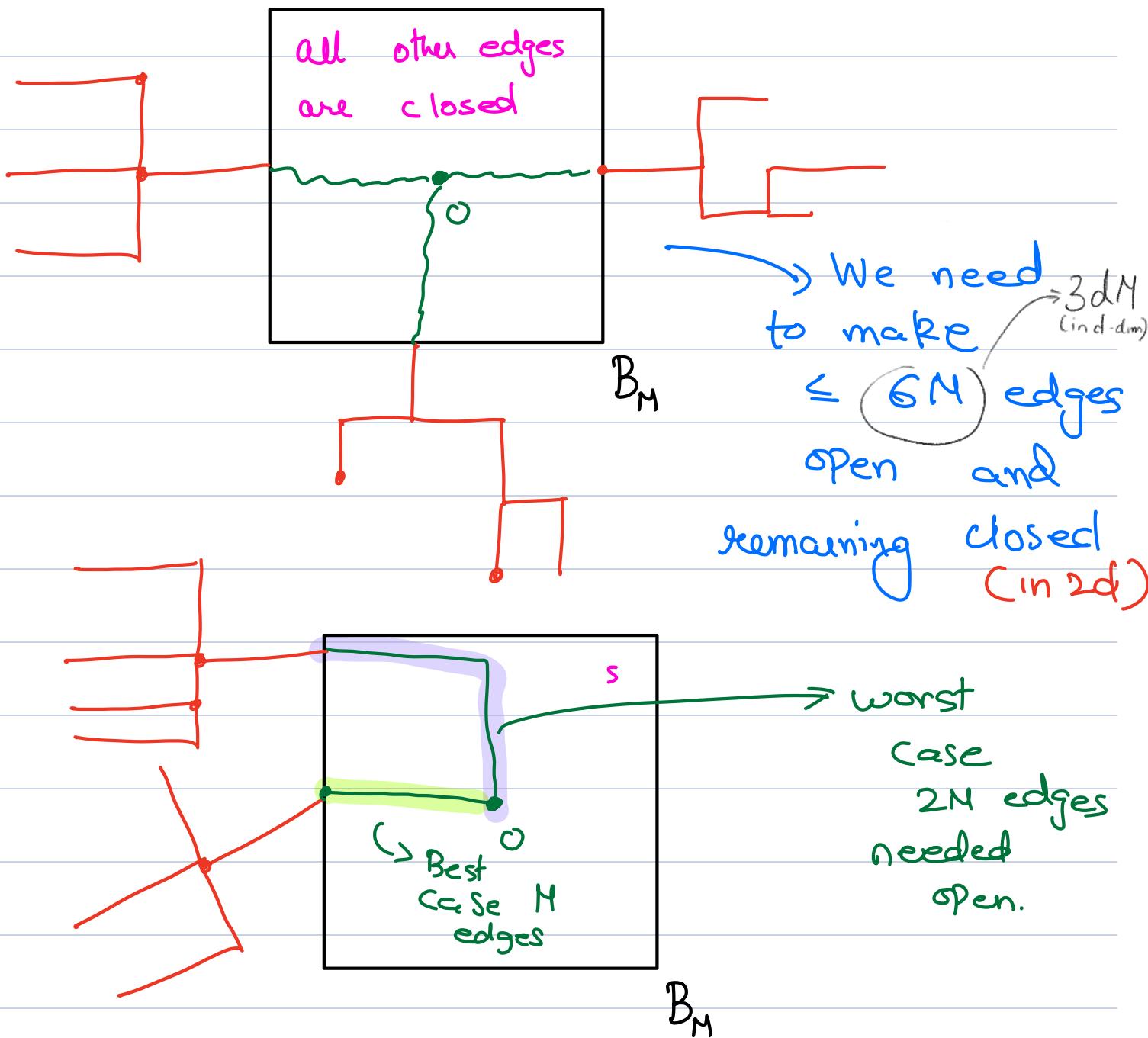
(i) $\# C(v) = \infty$

(ii) $C(v) \setminus \{v\}$ has no finite connected component and exactly 3 unbounded connected component.

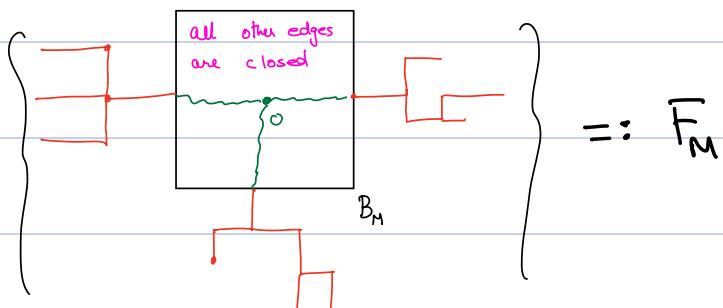


Suppose $P_p(N = \infty) > 0$. Get N large enough s.t. $\gamma > 0$

$P_p(B_m \text{ intersects at least 3 distinct unbounded open clusters}) > 1$
 for all $m \geq M$
 !! A_m



Let



$$P(F_N) \geq p^{3dM} (1-p)^{(2N)^d} =: \varepsilon > 0$$

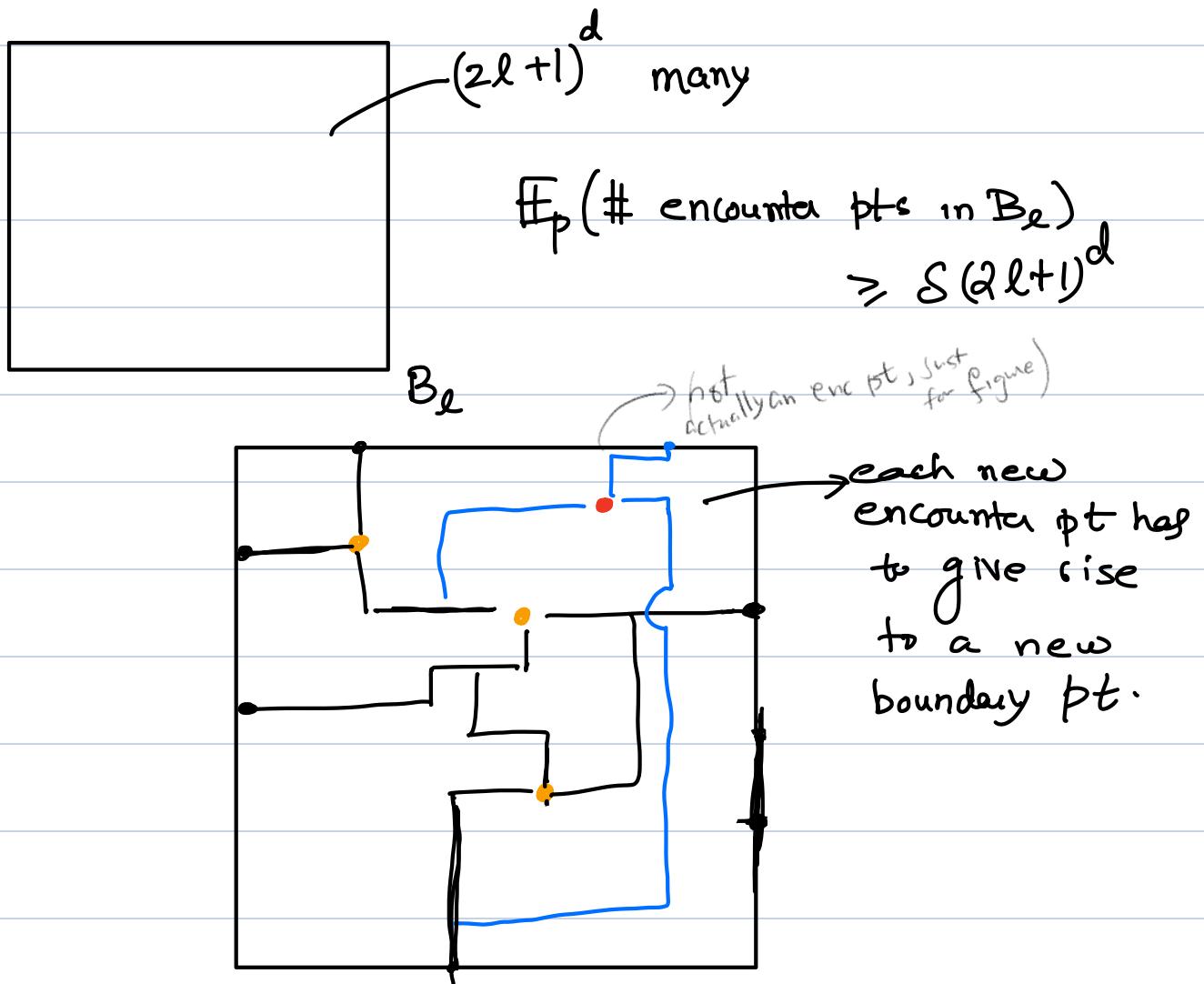
$$P(A_N \cap F_N) \geq P_p(A_N) P_p(F_N)$$

$$\geq \varepsilon \cdot 1 =: \delta > 0$$

$$\Rightarrow P_p(\text{o is an encounter point}) \geq \delta > 0 \quad \text{for } p \in (0, 1)$$

indep of N

$$\text{By T.I., } P_p(v \text{ is an encounter point}) \geq \delta > 0$$



Lemma : If there are R -encounter points in a box B , then there are at least $R+2$ vertices on the boundary ∂B of B which are connected by open paths to the encounter points.

$\mathbb{E}_p \left(\# \text{points of vertices in } \partial B_e \text{ which are connected to the encounter points} \right)$

$$\geq \delta (2l+1)^d + 2$$

(in particular $\geq \delta (2l+1)^d$)

$$(2l)^2 \text{ — area}$$

$$\leq 8l \text{ — Perimeter}$$

In d dimensions

$$(2l+1)^d, \quad 2d (2l)^{d-1}$$

B_e

Get l large s.t. $\delta (2l+1)^d > 2d (2l)^{d-1}$

$\Rightarrow \Leftarrow$

Thus $\{N = \infty\}$ is not possible.

[Basically we embedded a tree in \mathbb{Z}^d]
which cannot be done.

Next Class: Thm (Kesten) $p_c(2) = \frac{1}{2}$ (We'll use Zhang's)
argument