

Lecture 2 :

Some basic facts :

$$\textcircled{1} \quad p_c(d+1) \leq p_c(d)$$

$$\textcircled{2} \quad p < p_c(d) \Rightarrow \Theta(p) = 0$$

$$p > p_c(d) \Rightarrow \Theta(p) > 0$$

$$\textcircled{3} \quad p = p_c(d) \quad \text{we dont have any info}$$

$$p_c(d) \equiv p_c$$

Thm : For $d \geq 2$, we have

$$0 < p_c(d) < 1$$

Want

to show

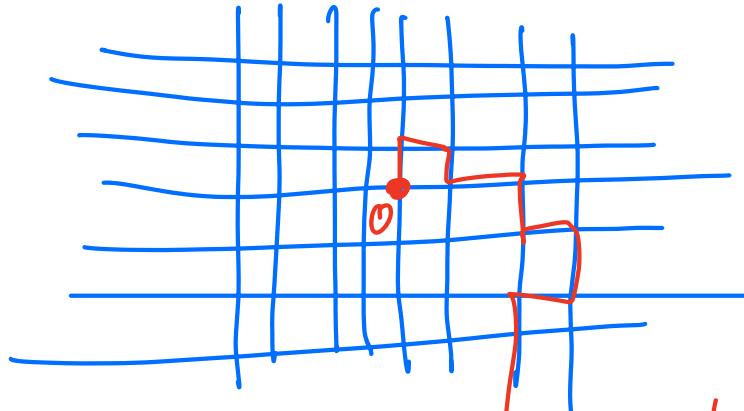
$$\boxed{p_c(2) < 1}$$
$$p_c(d) > 0 \quad \forall d \geq 2$$

Actually we'll show $p_c(2) \leq \frac{2}{3}$

and $p_c(2) \geq \frac{1}{3}$

Proof:

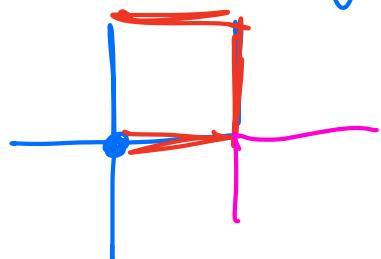
$$\textcircled{1} \quad p_c(d) \geq \frac{1}{2d-1}$$



length $\leq n$

Starting from 0 .

Counting Argument:



First step has $2d$ choices

Next step has $2d-1$ choices

All further step - each has atmost $2d-1$ choices

Total # of paths from the origin of length $\leq n$ is atmost $2d(2d-1)^{n-1}$

For a given path of length n - The prob that the path is open is p^n .

So the expected number of open paths of length n , starting from the origin is

$$\sum_{\substack{\text{over} \\ \text{all} \\ \text{Paths of} \\ \text{length } n}} p^n \mathbb{I}(\text{path is open})$$

$$\leq 2d (2d-1)^{n-1} p^n$$

k_n

$$\text{Bin} \left(2d (2d-1)^{n-1}, p^n \right)$$

$\therefore \text{O.P} \leq \mathbb{P}_p \left(\text{there is atleast one open path from the origin of length } n \right)$

$\leq \mathbb{E}_p (\# \text{ open paths from the origin of length } n)$

$$\leq 2d (2d-1)^{n-1} p^n$$

$\xrightarrow{\quad} 0$

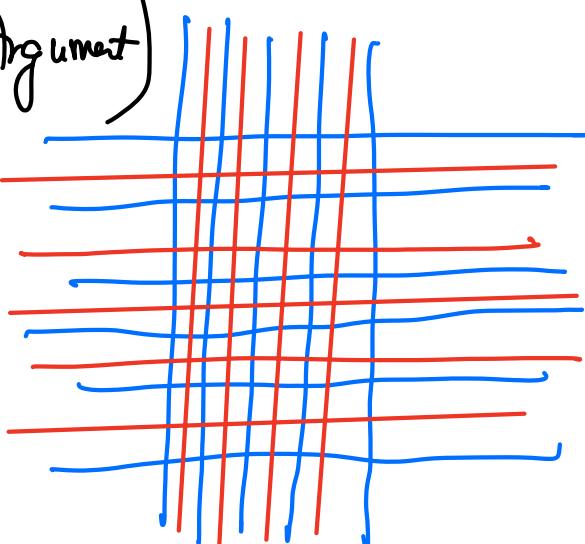
$$\text{for } p < \frac{1}{2d-1}$$

$$\therefore \theta(p) = 0 \text{ for } p < \frac{1}{2d-1}$$

$$\Rightarrow \phi_c \geq \frac{1}{2d-1}$$

② $\phi_c(2) \leq \frac{2}{3}$ (Peierls Argument)

$$d=2$$



Let e^* denote the edge in \mathbb{L}^* which the edge $e \in \mathbb{L}$ intersects.

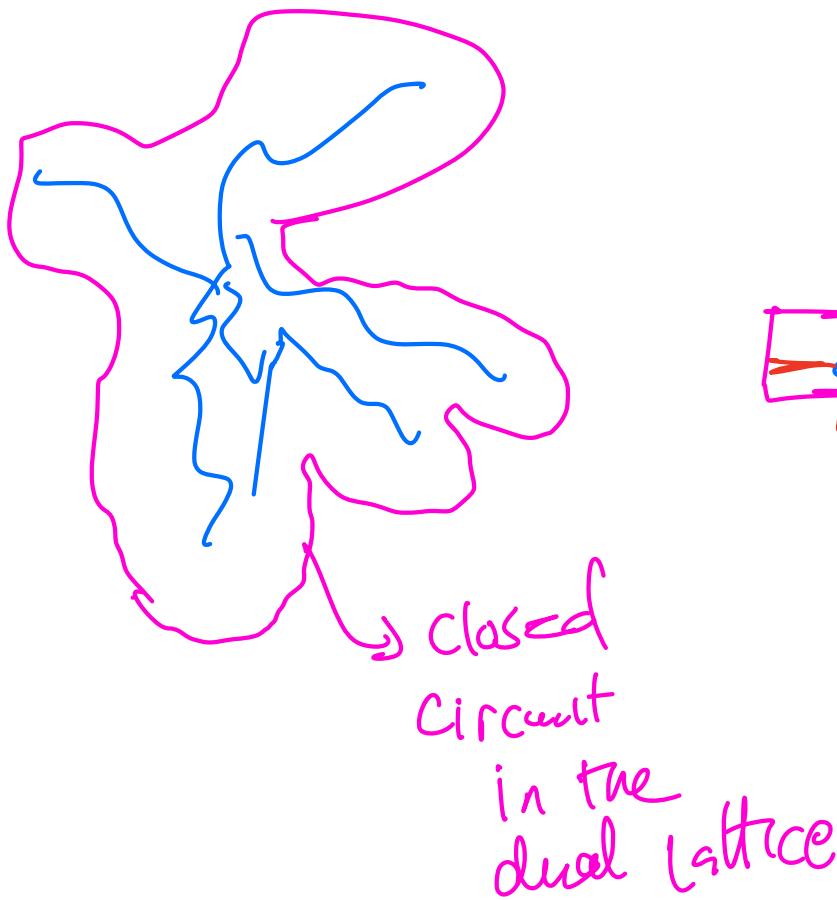
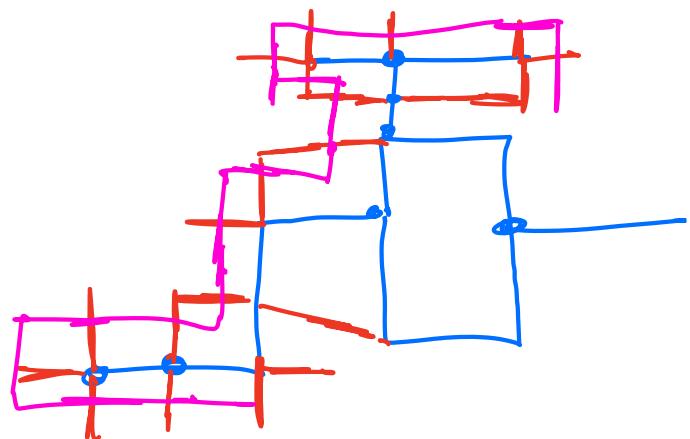
$$\text{Blue lattice: } \mathbb{L} = \mathbb{Z}^2$$

$$\text{Red lattice: } \mathbb{L}^* = \mathbb{L} + \left(\frac{1}{2}, \frac{1}{2}\right)$$

↳ Dual lattice of \mathbb{L}

The edge e^* is declared open/closed iff the edge e is open/closed.

Suppose the open cluster $C(O)$ of the original lattice is bounded.

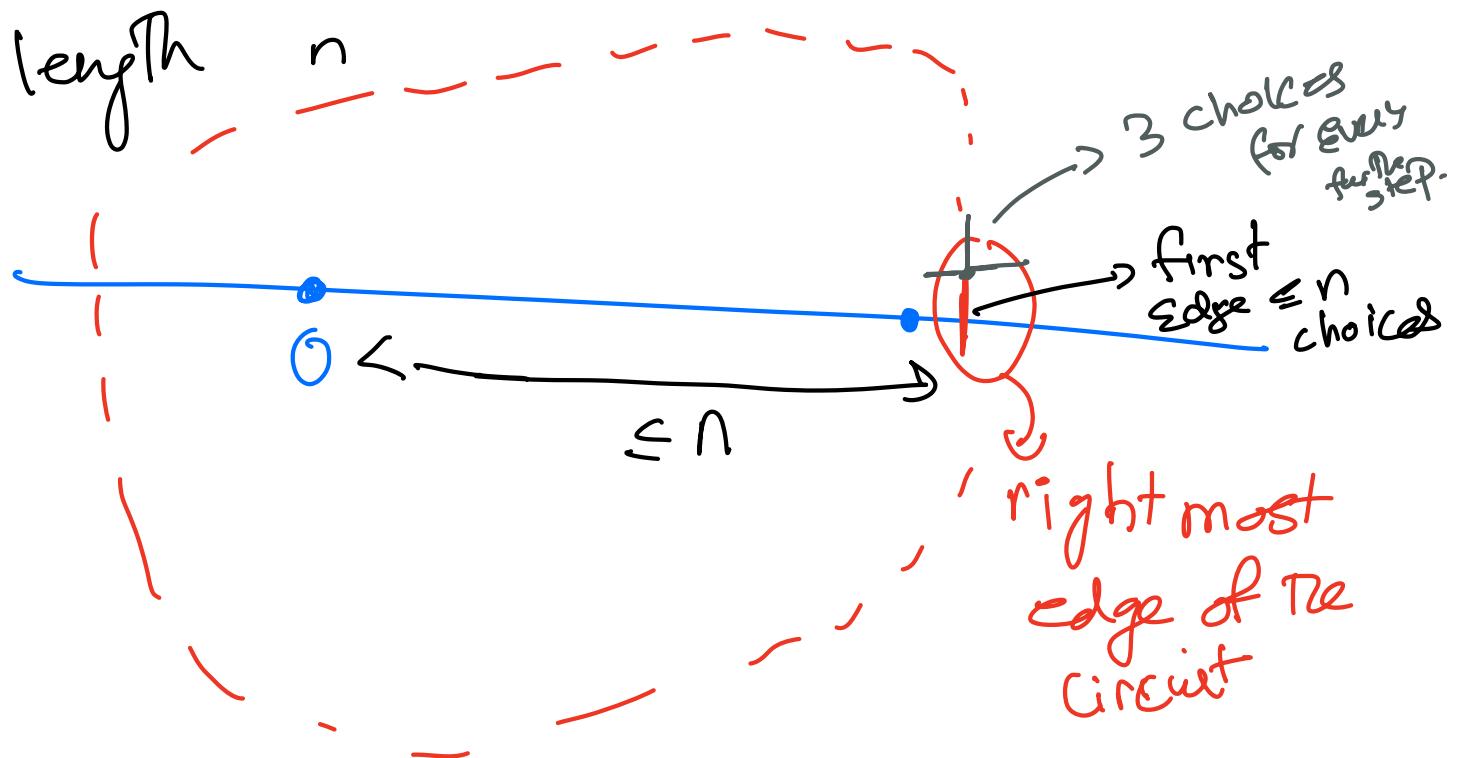


$\text{---} \rightarrow$ Dual edges
 --- closed edges
 $\text{---} \rightarrow$ open edges.

$\# C(O) < \infty$ iff \exists a closed dual circuit surrounding it

Whitney's Theorem for formulation
 \hookrightarrow graph theory

Now we'll count the # of circuits in \mathbb{L}^* surrounding the origin of \mathbb{L} of length n



$$\therefore \# \text{ closed circuits} \leq n 3^{n-1}$$

of length n

Any such circuit it is closed w.p. $(1-p)^n$

E_p (# of closed dual circuits surrounding \approx of \mathbb{L})

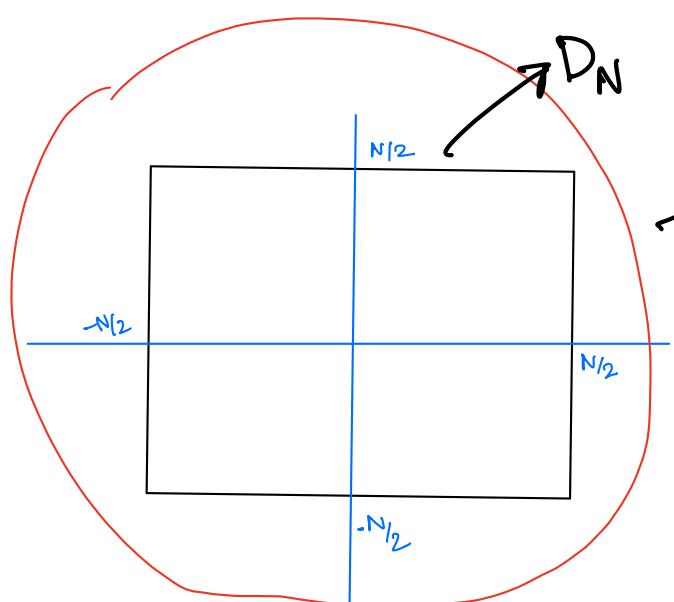
$$\leq \sum_{n=1}^{\infty} n 3^{n-1} (1-p)^n$$

2 ∞ iff $1-p < \frac{1}{3} \Leftrightarrow p > \frac{2}{3}$

From for $p > \frac{2}{3}$ choose N s.t.

$$\sum_{n=N}^{\infty} n 3^{n-1} (1-p)^n < \frac{1}{2}$$

For $p > \frac{2}{3}$, P_p (any closed dual Circuit of length N or more)



$$> 0$$

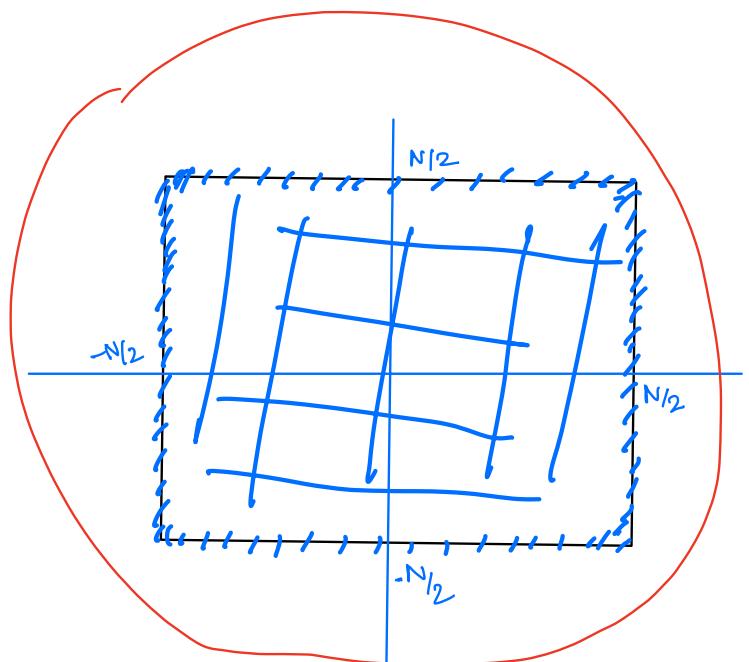
Any dual circuit surrounding the box must have length $\geq N$

$A_n := \{ \text{all edges of the lattice} \}$
 $\mathbb{L} \text{ in } D_N \text{ are open}$

$B_N := \{ \nexists \text{ any closed dual circuit surrounding } D_N \}$

$P_p(B_N) > 0 \rightarrow \text{from above, } p > 2/3$

$P_p(A_N) = p^{N^2} \geq 0 \text{ for } p > 0$



Event A_N depends on the edges inside the box D_N .

Event B_N depends on the edges of \mathbb{L} outside D_N

A_N and B_N are independent events,

$P_p(A_N \cap B_N) = P_p(A_N)P_p(B_N) > 0$
for $p > 2/3$

$\therefore Q(p) > P_p(A_N)P_p(B_N) > 0 \text{ for}$

$$\phi > 2/3.$$

Such counting arguments in mathematical physics are called Peierls argument — after Rudolf Peierls.

Thus,

$$\frac{1}{2d-1} \leq P_c(d) \leq \frac{2}{3}$$

Tools (required to study percolation)

Lemma (Subadditive lemma) [Fejete's lemma]

Let $\{a_n : n \geq 1\}$ be a R-valued sequence

S-t.

$$a_{m+n} \leq a_m + a_n \quad \forall m, n \geq 1$$

Then

$\lim_{n \rightarrow \infty} \frac{a_n}{n}$ exists and

$$\lim_{n \rightarrow \infty} \frac{a_n}{n} = \inf_{n \geq 1} \frac{a_n}{n}$$

Pf:

$$\textcircled{1} \quad \liminf_n \frac{a_n}{n} \geq \inf_{n \geq 1} \frac{a_n}{n}$$

Write $n = lm + r$

$$\parallel r \in \{0, 1, 2, \dots, l-1\}$$

by Subadditivity,

$$\begin{aligned} a_n &\leq a_{lm} + a_r & | a_r = l + (m-1)l \\ &\leq \max_l + a_r & a_{lm} \leq a_l + a_{(m-1)l} \\ &\leq \max_l + \max \{a_s : s=0, \dots, l-1\} \\ & \qquad \qquad \qquad a_0 = 0 \end{aligned}$$

$$\begin{aligned} \frac{a_n}{n} &\leq \frac{\max_l}{n} + \frac{\max \{a_s : s=0, 1, 2, \dots, l-1\}}{n} \\ &\leq \frac{\max_l}{ml} + \frac{\max \{a_s : s=0, 1, 2, \dots, l-1\}}{n} \end{aligned}$$

$$\longrightarrow \frac{a_l}{l}$$

as $n \rightarrow \infty$

This is true for all $l \geq 1$.

So

$$\frac{a_n}{n} \leq \inf_{l \geq 1} \frac{a_l}{l} \quad (\forall n)$$

②

$$\limsup_n \frac{a_n}{n} \leq \inf_{l \geq 1} \frac{a_l}{l}$$

By ①, ② \Rightarrow Subadditive lemma

FKG Ineq (Harris - FKG ineq)

$\Omega = \{0, 1\}^E$

$\omega, \omega' \in \Omega$

Mathematician

Physicists

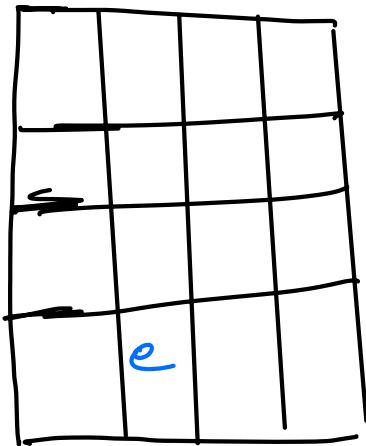
$$\omega(e_1), \omega(e_2), \dots$$

$$\omega: E \rightarrow \{0, 1\}$$
$$\omega': E \rightarrow \{0, 1\}$$

Define a partial order

$\omega \leq \omega'$ if $\omega \ll \omega'$ — $\forall e \in E$.

If edge e is open in the config ω , Then it is also open in ω'



$$\omega(e) = 1 \Rightarrow \omega'(e) = 1$$

$$\omega(e) = 0 \Rightarrow \omega'(e) = 0 \text{ or } 1$$

$\forall e \in E$

Defⁿ : A function $f: \Omega \rightarrow \mathbb{R}$ is increasing if $f(\omega) \leq f(\omega')$ for all $\omega \leq \omega'$, dec if $f(\omega) \geq f(\omega')$ for all $\omega \leq \omega'$.

An event $A \in \mathcal{F}$ is increasing / decreasing if 1_A is inc/dec $(\Omega, \mathcal{F}, \mathbb{P}_p)$

Thm (FKG Ineq) Let $f_1, f_2: \Omega \rightarrow \mathbb{R}$ be both increasing or both decreasing.

Assume they are square integrable (i.e. $\int_{\Omega} f_i^2 dP < \infty$ for $i=1,2$)

Then

$$\mathbb{E}_P(f_1 f_2) \geq \mathbb{E}_P(f_1) \mathbb{E}_P(f_2)$$

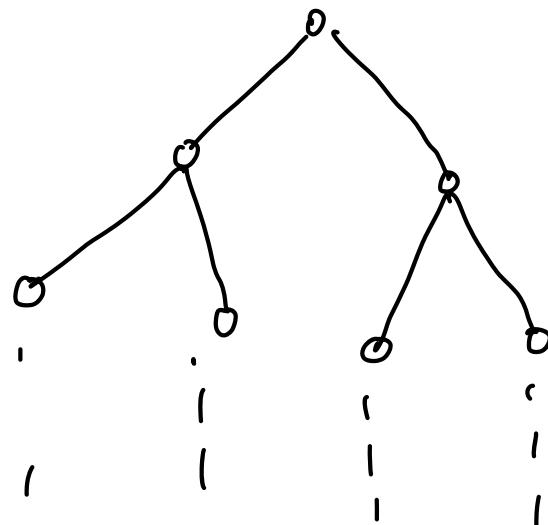
In particular if $f_1 = \mathbb{1}_A$ and $f_2 = \mathbb{1}_B$ then,

$$P_p(A \cap B) \geq P(A) P(B)$$

* FKG tells us that $\mathbb{E}_P(f_1 f_2) - \mathbb{E}_P(f_1) \mathbb{E}_P(f_2) \geq 0$
i.e. $\text{cov}(f_1, f_2) \geq 0$ i.e. f_1, f_2 are positively correlated.

Exercise

①



T = a rooted
binary tree

- Find $P_C(T)$
- Using Kolmogorov's 0-1 law show that $Q(P) > 0 \Rightarrow P_p(\exists u \in V \text{ s.t. } \#C(u) = \infty) = 1$
- $\{u \longleftrightarrow v\}$ is increasing.