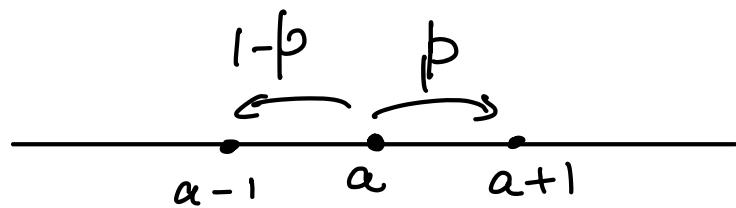


• Random walks

$S_0 = a$, S_n = position at time n



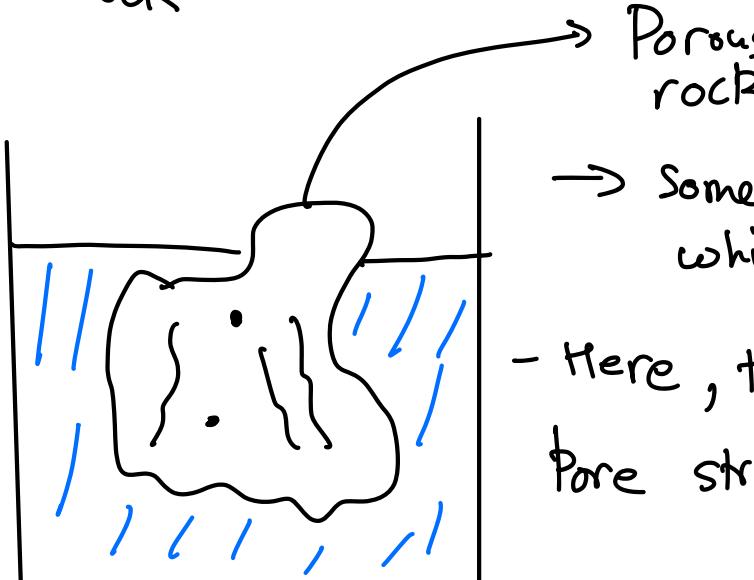
$$\text{Increments: } x_i = \begin{cases} +1 & \text{if } w_i \geq 0 \\ -1 & \text{if } w_i < 0 \end{cases}$$

Then, $S_n = a + \sum_{i=1}^n x_i$. In such a setup, the particle has the randomness inbuilt, the environment/medium is fixed (here, it's the line Z)

In percolation theory, the medium is random (random subgraph for instance) and the particle is allowed to move freely in the medium.

#1957 : Percolation theory / model introduced by
Broadbent and Hammersley

To Study : The flow of liquid in porous rock



→ Some pores will get wet while others won't.

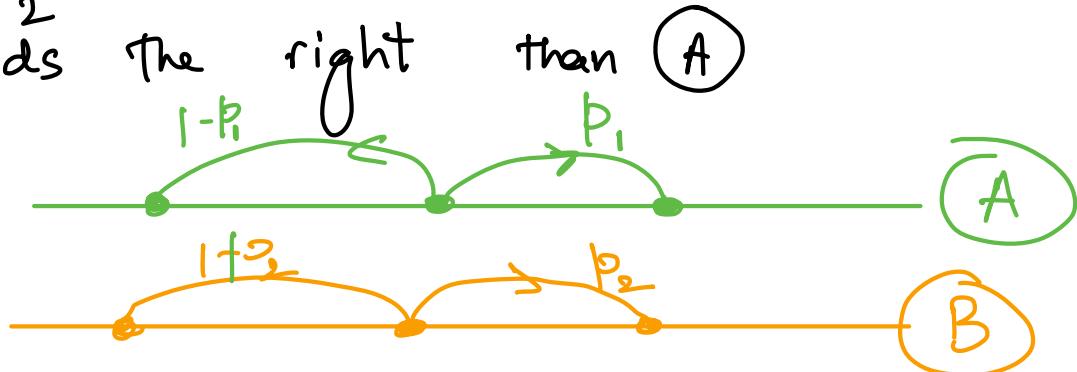
- Here, the medium i.e., the pore structure is random.

- Granite / marble → Very diff pore structures
- Sandstone → pore structures

So if we go back to the RW analogy, we need a parameter to control this 'porosity'

By the same argument, we may expect water to percolate more in sandstone than in Granite.

For $p_2 > p_1$, \textcircled{B} is likely to be more towards the right than \textcircled{A}



Goal : ① Bond percolation on \mathbb{Z}^d

→ • Grimmet - Percolation (1999)
• Bollobas + Riordan (2006)

② Orientable percolation

→ Some articles, no books perse

③ Continuum percolation

I Bond Percolation

$G = (V, E)$ a graph, where V is countable (finite/infinite) and E is a collection of unordered pairs of vertices.

In percolation theory,
Vertices \equiv sites
edges \equiv bonds

Defⁿ: A path π is a collection of vertices and edges (finite or infinite)
 $(v_1, e_1, v_2 \dots, v_{n-1}, e_n, v_n, \dots)$ where

$$e_i = \langle v_i, v_{i+1} \rangle \quad \text{if } i \geq 1, v_i \in V, e_i \in E.$$

angular brackets = unordered

- We require paths to be self-avoiding i.e., $v_1, v_2 \dots v_n$ are all distinct.
- Two vertices u and v are said to be connected by a path if $\exists \Pi = (v_1, \dots, v_n)$ s.t. $v_1 = u$, and $v_n = v$.

Going back to the analogy of pores - we would like to think of them as pipes. Imagine pipes with a tap in the middle - which can be opened or closed. So, we wish to classify edges as either open or closed.

- We want to carry out this classification in an iid fashion. An edge is

$$\begin{cases} \text{open w/p } p & [1] \\ \text{closed w/p } 1-p & [0] \end{cases} \xrightarrow{\text{labels}}$$

Probabilistic formulation : Take $V = \mathbb{Z}^d$ and

$$E = \left\{ \langle u, v \rangle : \underbrace{\|u - v\|_1}_1 = 1 \right\}$$

→ or $\|u - v\|_2 = 1$ also works.

This graph will be called the lattice
 $\mathbb{L}^d = (\mathbb{Z}^d, E)$.

Let (i) $\Omega = \{0, 1\}^E$ → set of all labels

(ii) $\mathcal{F} = \sigma$ -algebra generated by cylinder sets

of the form

$$\left\{ \omega(e_i) = \varepsilon_i \mid e_i \in E, \varepsilon_i \in \{0, 1\} \right\}$$

$1 \leq i \leq n, n \geq 1$

The elements depend only on finitely many edges.

(iii) P_p - Product measure, given by its marginals

$$p \delta_{1,1} + (1-p) \delta_{0,0}$$

This gives us a prob-space $(\Omega, \mathcal{F}, P_p)$

Parametrized
by ϕ

Product Space
of Bernoulli f.v.s

$[\phi \text{ for Sandstone} > \phi \text{ for Granite}]$

- Note that the def'n of the P -space doesn't depend on the integer lattice \mathbb{Z}^d — can be done for any graph.

Alternatively, we could consider Site percolation

- The vertices will be assigned open or closed

$$\Omega = \{0, 1\}^V$$

$$\mathcal{F} = \sigma(\text{cylinder sets}) = \sigma \left(\{v \in \Omega \mid v(v_i) = \varepsilon_i \in \{0, 1\} \}_{1 \leq i \leq n, n \geq 1} \right)$$

P_p — product measure with marginals
 $\phi \delta_{\{1\}} + (1-\phi) \delta_{\{0\}}$

—We will stick to bond percolation in this course

- A path π is open (closed) if all edges in π are open (closed)

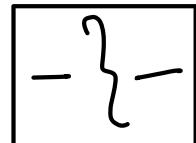
Being closed is

- Two vertices u, v are said to be conn. by an open path if \exists an open path connecting these two vertices

also an interesting property - useful in many dual arguments

- will be useful later on, when dealing with the dual lattice

Notation: u and v conn
 $\equiv u \longleftrightarrow v$



- The open cluster of $u \in V$ is

$$C(u) = \{v \in V \mid v \longleftrightarrow u\}$$

for $\omega \in \mathbb{Z}^d$, let $C := C(\omega) = \{v \mid v \longleftrightarrow \omega\}$

Note: C — random set of vertices of \mathbb{Z}^d (or V)

H.W.

- ① Show that $\{u \leftrightarrow v\} \in \mathcal{F}$
- ② $\{\#C \geq 10\} \in \mathcal{F}$
- ③ $\{\#C < \infty\} \in \mathcal{F}$

In particular we can define,

$$\Theta(p) := P_p(\#C = \infty).$$

Note that as \mathbb{Z}^d is transitive, \sim is an arbitrary choice.

Note: (i) $p=0 \Rightarrow C = \{0\}$ a.s. ; $\Theta(p)=0$

(ii) $p=1 \Rightarrow C = \mathbb{Z}^d$ a.s. $\Rightarrow \Theta(p)=1$

• We go back to the RW example, as $p \uparrow$, the random walker with larger p proceeds more to the right on avg.

- Here again, we expect $\Theta(p_1) \leq \Theta(p_2)$ when $p_1 \leq p_2$. [we expect the cluster of p_1 to be "smaller" than p_2]

Thm 1: If $p_1 \leq p_2$, then $\Theta(p_1) \leq \Theta(p_2)$

Proof: Coupling (Doeblin: 2nd WW)

~~eg:~~ Renewal Thm in MC (See Grimmett Stirzaker)

Let U_1, U_2, \dots be iid $\text{Unif}[0,1]$ r.v.

on some prob space $(G, \mathcal{F}, \mathbb{P}) \cdot \mathbb{R}^d$
has countably many edges - label them
 $\{e_1, e_2, \dots\}$.

We consider two lattices A and B.
Fix $p_1 \leq p_2 \in (0,1)$. Let E^A and E^B
denote the labelled edge sets of A
and B.

Set,

$$l(e_i^A) = 1 \mathbb{1}_{U_i > 1 - p_i}$$

$$l(e_i^B) = 1 \mathbb{1}_{U_i > 1 - p_i}$$

Then the induced measure on A is P_{p_1} and that on B is P_{p_2} . Thus,

$$\Theta(p_i) := P_{p_i} (|C| = +\infty)$$

$$\left. \begin{aligned} l(e_i^A) &= 1 \\ \Rightarrow l(e_i^B) &= 1 \\ \text{but} \\ \text{not vice} \\ \text{versa} \end{aligned} \right\} = P(|C_A| = +\infty) \leq P(|C_B| = +\infty) \quad \begin{matrix} \text{By construction} \\ \downarrow \end{matrix}$$

$$= P_{p_2} (|C| = +\infty) = \Theta(p_2)$$

168

(Note: $\mathbb{1}_{U_i \leq p_i}$, $\mathbb{1}_{U_i \leq p_2}$ would also work)

• What we essentially did in coupling =

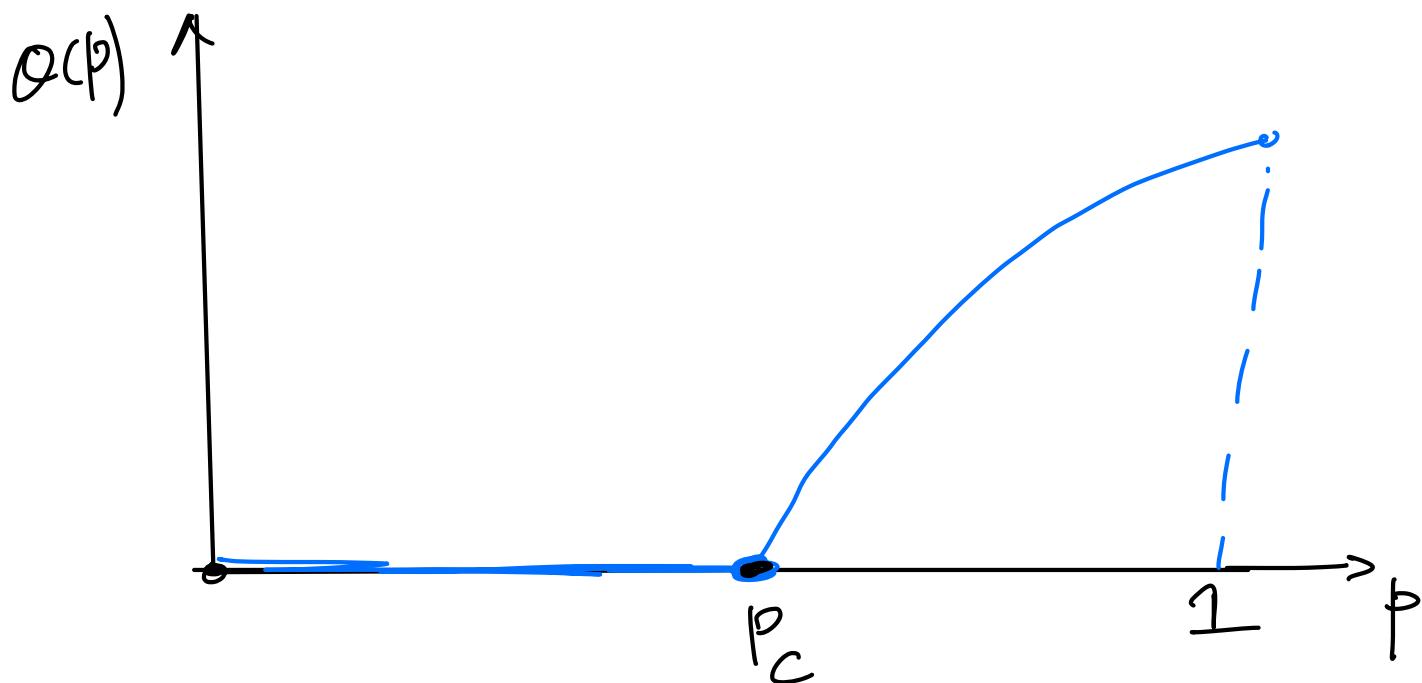
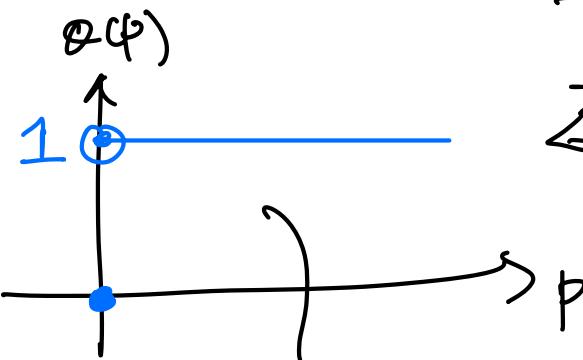
Went to a new P -space, and defined C_A C_B new rvs there. which have same

dist as $C_0|_{p_1}$, $C_0|_{p_2}$ but we could compare them.

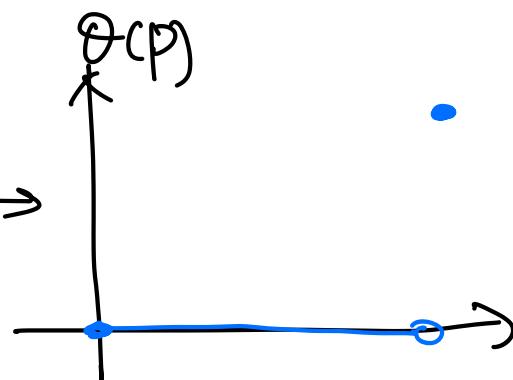
What we have shown : $\Theta(p)$ is monotonic
non-decreasing.

Defⁿ : The critical parameter of bond percolation on \mathbb{Z}^d is defined as

$$p_c(d) = \inf \{p \mid \Theta(p) > 0\}$$



Trivial cases
- these don't occur



HW : for $d = 1$
it is a triviality

