The OSSS inequality and its consequences in percolation

Rahul Roy
Indian Statistical Institute, New Delhi.

So we need to obtain the Duminil-Copin inequality, and it is here we
need the OSSS inequality.

Let {(Qi, Fi, i) : 1 < i < n} be a finite collection of measure spaces
and (2, F, p) be the product space.
Suppose we want to find whether there is a Left-Right open crossing

of the following rectangle.

€1 €o

€7

€3 €4

€8

€s €q

A := {3 a L-R open crossing of the box}
Fi=14
f:{0,1}* —[0,1]

STOP

* o o °

Let {(Q; := {0,1}, Fi, i) : 1 <i<n}and (2,F,u) be the
product probability space.

Let f: @ — [0, 1] be a measurable function (random variable) and fix
a configuration w. We want an algorithm T (decision tree) which
opens (samples), one at a time, an w(e;) to determine the function.

We start with a root index i; and a family of decision rules
(¢;) : 1 <j<n—1. The index ij1; is chosen as

ij_|_1 = ij(il, - ,ij; w(eil), o oo w(eij)).

In our example, we chose iy = 1 and

(

2 1fw(el) =1

g = Cbl(ilaw(eil)) = .
3 1fw(e1) = 0.

\

The algorithm T stops at step T if the value of the function is
determined at time T, i.e., i1,...,i, and w(ey,), ..., w(ei,)
determine the function f.

Of course, T depends on the choice of the root index and the family of
decision rules (¢;) : 1 <j<n— 1.
In our example, if we observe

il = 1,(.4)(611)) = 1; 12 = 2,&)(612)) = O;

13 = 7,60(613)) = 1, i4 = 4,w(ei4)) =1

then we stop at the 4th step, so 7 = 4.

Definition

The algorithm T reveals edge e; if j € {i1,...,ir}

Clearly the event {T reveals e;} depends on the configuration

w(ei), ... and we define the revealment of j as
0o, (T) := p{T reveals e;}.

We also define the influence of an edge e; as

w(e;) if j # i

Infie; = p{f(w) # f(w’)} where &’(e;) = <
1 —w(e) ifj=1.

The first result we have is useful for bond/site percolation on the

lattice, later we state and prove the result useful for continuum

models.

Su
(OSSS Inequality) Let f and (&, F, i) be as above. In addition

suppose that f is an increasing function. Then we have

Var(f) < 2 En: Je. (T)Cov(wej, f).

j=1

R. O’Donnell, M. Saks, O. Schramm and R. Servedio (2005)

First note that because f takes values in [0, 1], we have
Var(f) = E ((f — E(f))?) < E(/f — Ef]).
Now let w and w’ be two i.i.d. realizations from €.
E(f — E(f)) = E (f(w) — f(«")),

where E is w.r.t. the product measure ;o X . And so

Var(f) < E(|f — E(f)]) < E (|f(w) — f(«’)]) - (1)

For the realisation w suppose the algorithm checks the edges
€i, .. .46 before stopping.
Note that 7, as well as, the order of the edges e;,,€;,,... depend on

the realisation w. Let
Jt = {t+1,t—|—2,...,7’}

and, define the configuration w?, as

’

w(e;) forje Jq

w'(es;) 1= <
w,(eij) for J € Jt

\

Clearly f(w™) = f(w’) and, the stopping time 7 ensures that
f(w') = f(w), so that from (1) we have

Var(f) < E(If — E(1)])
=) E (|f(w) — f()])

= E (Z (') — f(wt>|>

<ZE (Jf(w"™!) = f(w") [1e<ry)

-

Z z (1F(w" ™) = (") Lgu=sy)

To study the term f(w®™1) — f(w"), we note that since f is increasing,

on the event {i; = j} we have

H(w' ™) — ()]

— (f(w' 1) — (")) (W' (e) — w'(e))

— {0)W T (o) + Hwhw (o) — Hw' Wt () — Hw)w' ™ (er)
(3)

We will study each of the four terms above.

Let X := (w(ei;), ceoswien .)).
Observe that it is X(_1 measurable.

On the event {i; = j} we have
E (f(wt_l)wt_l(ej) | Xt_l)
= E (f(w)w(ej)) by independence
=E (f(wt)wt (&) ’ Xt> by independence

Next, since f is increasing, so fixing the first few co-ordinates of w,

f(w*H)wt(e) is increasing in w’. So, by the FKG inequality,
E <f(wt_1)wt(ej)) Xn) > E (f(wt_l) ‘ Xn) E (wt(ej)) Xn)
and
E (E (f(w' ™)w' (o)) | Xa) ‘Xt_1>
> E (E(w'(e) | Xa) (E(E@' ™) [X0)) | Xic)

(50 [o) [0 % [%]

because i; is determined by i1,...,i;_1 and so

E (wt (&) ‘ Xn) is X{_1 measurable
=E (E(w'(ej) | Xe—1)(E(f(w* ") | Xi—1)
= BE(w(e;))E()

because w' and w' ™!

are independent of X;_;

Thus we have

E (f(wt_l)wt(ej)

Xe1) 2 B(w(e)E(D (5)

Similarly, we obtain

E (f(wt)wt_l(ej)

X:) > E(w(e;)E(D (6)

Now combining everything from (2) and (3) we have

Var(f)
<30 (B e ™ (@) L) + E(w)w! () L)

—E(f(wt_l)wt(ej)l{t:j}) —]E(f(wt)wt_l(ej)l{t:j}))
taking conditional expectations appropriately w.r.t. X;_jand X;

and then unconditioning and using (5) and (6)

<D) E(CEE(f(w)w(e))) — 2Ef(w)Ew(e;)) ii=j3)

j=1t=1

- Z 2Cov(f, w(ej)) Z E(1{t=3)

=2 Z de; (T)Cov(f, w(e;))

So now we have to find a ‘good’ algorithm T which gives a good
bound on d., (T).

A natural algorithm would be to first enumerate the edges E in

B, = [—n,n]%. Note that for the event {0 <+ 8B,}, we do not need
to include the edges of 9B, .

So take Vy = 0, the origin, and Eq = 0.

Let e =< 0,v > (say) be the edge adjacent to the origin which is
‘earliest’ in the enumeration of E.

Take

2

V() if w(e) = (

1 = {e} and V; <\V0U{v} f w(e) = 1

For the next step get the edge {f =< x,y >& E; with x € V; and
y & V1, which is ‘earliest’ in the enumeration of E \ Ej.

Take

2

Vi if w(f) =0

E2=E1U{f} andVQZ <
\Vl U {y} 1fw(f) =1

Continue in this fashion until one of the following two happen for the

first time.

V:NOB, #0

in this case, you have found the open path from {0} to 9B,
there is no edge in E \ E; incident to V;

in this case, there is no open path from {0} to 9B,
Here 7 =t

Unfortunately, this algorithm does not give a good bound on J., (T).

Duminil-Copin’s work is to get an ‘averaging’ algorithm which gives a
better bound.

We want an algorithm to obtain all the open connected components
of B, which intersect the square §(By) for each k € {1,...,n}.

The algorithm T we define below starts with

VO — {V TV E 5(Bk)} and EO = @

Having defined Vo C V; C .-« C Vgand Eg C E; C ... C Eg
(Step 1) if there exists an edge e =< x,y >¢& Eg with x € Vg and

y & Vg, choose the one ‘earliest’ in the enumeration of E \ Eg.
With a slight abuse of notation let e =< x,y > be this edge.

The decision rule ¢; chooses this edge e and set

y

V, if w(e) = 0

ES_|_1 = ES U {6} and VS_|_1 =
Vs U {v} ifw(e)=1.

(Step 2) if no such edge exists then take Eg11 = Eg U {e}, where e is the

‘earliest’ in the enumeration of E, with e € Eg and V41 = V.

We note that in the first step we are still exploring whether an edge
belongs to the connected open component of §(By). When this step
stops, we are in exactly one of two situations

Situation 1. we have found a connected open component admitting a
path from the origin {0} to 6(By)

Situation 2. (i) we have found closed edges surrounding the origin
{0} in By which does not allow any open path from the origin {0} to
0(By) or

(ii) we have found closed edges surrounding d(By) in B, \ Byx which
does not allow any open path from the origin §(By) to d(B,).

In either case our goal has been achieved.

More importantly note that the stop time 7 is smaller than the time
when the first step stops. Also 7 may be strictly smaller because
Situation 1 or 2 may have been obtained even before all the connected
open components of §(By) are found.

Thus for any edge e =< u,v >€ E we see that the revealment of e
for the algorithm to study lfo« 88,3 is smaller than that for the

above algorithm. Hence

5.(T) < Pp{u 4 8(Bi)} + Pp{v > 5(Bi)}.

W.l.o.g. assume that u & 9B, and v # 0.

Taking d, = max{uy,...,uq}, where u = (uy,...,uq), we see that

> Po{u+ 6B} <> Pyfu (u+6(Bi—a,))}

n—1
<2) 6 (7)
k=0

Combining everything we have

n6,(p)(1 — 6.(p))

= nVar(lgowsn,}) direct calculation

<2) 68.(T) Cov(l{pemram,y>w(e)) OSSS
k=1e€E

n—1

<8 6 Y Cov(l{pwan,3sw(e)) from (7)
k=0 ecE

n—1

= 8p(1 — p)O’ (p) Z 0, Russo’s formula
k=0

< 26, (p) z_: Ok (p)

Finally, 0,,(p) being a polynomial in p with 8, < 1 for p < 1, we can
get € > 0 and a constant ¢ > 0 such that 1 — 8(1 —€) = ¢ > 0,

which gives us

né,(p)
1 k(D)

0 (p) > c

as required.

~C,M

For bea b YPP (ﬂ)& C\Q
R,
ek B () ok

2

