
The OSSS inequality and its consequences in percolation

Rahul Roy
Indian Statistical Institute, New Delhi.

OSSS setup
So we need to obtain the Duminil-Copin inequality, and it is here we
need the OSSS inequality.

Let {(Ωi,Fi, µi) : 1 ≤ i ≤ n} be a finite collection of measure spaces
and (Ω,F , µ) be the product space.
Suppose we want to find whether there is a Left-Right open crossing
of the following rectangle.

1

Decision tree

e1 e2

e3 e4

e7

e8

e5 e6

A := {∃ a L-R open crossing of the box}

e1

ω(e1) = 1 ω(e1) = 0

e2

ω(e2) = 0
ω(e2) = 1

STOP

e7

ω(e7) = 1 ω(e7) = 0

e4

ω(e4) = 1
ω(e4) = 0

STOP

e3

e8

e8

f := 1A

f : {0, 1}8 → [0, 1]

1

Let {(Ωi := {0, 1},Fi, µi) : 1 ≤ i ≤ n} and (Ω,F , µ) be the
product probability space.
Let f : Ω → [0, 1] be a measurable function (random variable) and fix
a configuration ω. We want an algorithm T (decision tree) which
opens (samples), one at a time, an ω(ei) to determine the function.
We start with a root index i1 and a family of decision rules
(φj) : 1 ≤ j ≤ n − 1. The index ij+1 is chosen as

ij+1 := φj(i1, . . . , ij;ω(ei1), . . .ω(eij)).

In our example, we chose i1 = 1 and

i2 = φ1(i1,ω(ei1)) =





2 if ω(e1) = 1
3 if ω(e1) = 0.

The algorithm T stops at step τ if the value of the function is
determined at time τ , i.e., i1, . . . , iτ and ω(ei1), . . . ,ω(eiτ)

determine the function f.
Of course, τ depends on the choice of the root index and the family of
decision rules (φj) : 1 ≤ j ≤ n − 1.
In our example, if we observe

i1 = 1,ω(ei1)) = 1; i2 = 2,ω(ei2)) = 0;
i3 = 7,ω(ei3)) = 1; i4 = 4,ω(ei4)) = 1

then we stop at the 4th step, so τ = 4.

Definition
The algorithm T reveals edge ej if j ∈ {i1, . . . , iτ}

Clearly the event {T reveals ej} depends on the configuration
ω(ei1), . . . and we define the revealment of j as

δej(T) := µ{T reveals ej}.

We also define the influence of an edge ei as

Infiej := µ{f(ω) %= f(ω′)} where ω′(ej) =





ω(ej) if j %= i
1 − ω(ei) if j = i.

The OSSS inequality

The first result we have is useful for bond/site percolation on the
lattice, later we state and prove the result useful for continuum
models.

Theorem
(OSSS Inequality) Let f and (ω,F , µ) be as above. In addition
suppose that f is an increasing function. Then we have

Var(f) ≤ 2
n∑

j=1
δej(T)Cov(ωei , f).

———————————————————
R. O’Donnell, M. Saks, O. Schramm and R. Servedio (2005)

J

Proof

First note that because f takes values in [0, 1], we have

Var(f) = E
(
(f − E(f))2) ≤ E (|f − Ef|) .

Now let ω and ω′ be two i.i.d. realizations from Ω.

E(f − E(f)) = E (f(ω) − f(ω′)) ,

where E is w.r.t. the product measure µ × µ. And so

Var(f) ≤ E(|f − E(f)|) ≤ E (|f(ω) − f(ω′)|) . (1)

For the realisation ω suppose the algorithm checks the edges
ei1 , . . . , eiτ before stopping.
Note that τ , as well as, the order of the edges ei1 , ei2 , . . . depend on
the realisation ω. Let

Jt := {t + 1, t + 2, . . . , τ}

and, define the configuration ωt, as

ωt(eij) :=





ω(eij) for j ∈ Jt

ω′(eij) for j %∈ Jt

Clearly f(ωτ) = f(ω′) and, the stopping time τ ensures that
f(ω0) = f(ω), so that from (1) we have

Var(f) ≤ E(|f − E(f)|)
≤ E (|f(ω) − f(ω′)|)

= E
(

τ∑

t=1
|f(ωt−1) − f(ωt)|

)

≤
n∑

t=1
E
(
|f(ωt−1) − f(ωt)|1{t≤τ}

)

≤
n∑

j=1

n∑

t=1
E
(
|f(ωt−1) − f(ωt)|1{t=j}

)
(2)

11

To study the term f(ωt−1) − f(ωt), we note that since f is increasing,
on the event {it = j} we have

|f(ωt−1) − f(ωt)|
=
(
f(ωt−1) − f(ωt)

) (
ωt−1(ej) − ωt(ej)

)

= f(ωt−1)ωt−1(ej) + f(ωt)ωt(ej) − f(ωt−1)ωt(ej) − f(ωt)ωt−1(ej)

(3)

We will study each of the four terms above.

Let Xt := (ω(ei1 , . . . ,ω(eit∧τ)).
Observe that it is Xt−1 measurable.
On the event {it = j} we have

E
(

f(ωt−1)ωt−1(ej)
∣∣∣ Xt−1

)

= E (f(ω)ω(ej)) by independence

= E
(

f(ωt)ωt(ej)
∣∣∣ Xt

)
by independence (4)

I

Next, since f is increasing, so fixing the first few co-ordinates of ω,
f(ωt−1)ωt(ej) is increasing in ω′. So, by the FKG inequality,

E
(

f(ωt−1)ωt(ej)
∣∣∣ Xn

)
≥ E

(
f(ωt−1)

∣∣∣ Xn
)
E
(
ωt(ej)

∣∣∣ Xn
)

and

E
(
E
(
f(ωt−1)ωt(ej)

∣∣ Xn
) ∣∣∣ Xt−1

)

≥ E
(
E(ωt(ej)

∣∣ Xn)(E(f(ωt−1)
∣∣ Xn))

∣∣∣ Xt−1
)

= E
(
E(ωt(ej)

∣∣ Xt−1)
[
E(f(ωt−1 ∣∣ Xn))

∣∣∣ Xt−1
])

because it is determined by i1, . . . , it−1 and so

E
(
ωt(ej)

∣∣∣ Xn
)

is Xt−1 measurable

= E
(
E(ωt(ej)

∣∣ Xt−1)(E(f(ωt−1)
∣∣ Xt−1

)

= E(ω(ej))E(f)
because ωt and ωt−1 are independent of Xt−1

Thus we have

E
(

f(ωt−1)ωt(ej)
∣∣∣ Xt−1

)
≥ E(ω(ej))E(f) (5)

Similarly, we obtain

E
(

f(ωt)ωt−1(ej)
∣∣∣ Xt

)
≥ E(ω(ej))E(f) (6)

Now combining everything from (2) and (3) we have

Var(f)

≤
n∑

j=1

n∑

t=1

(
E(f(ωt−1)ωt−1(ej)1{t=j}) + E(f(ωt)ωt(ej)1{t=j})

−E(f(ωt−1)ωt(ej)1{t=j}) − E(f(ωt)ωt−1(ej)1{t=j})
)

taking conditional expectations appropriately w.r.t. Xt−1and Xt

and then unconditioning and using (5) and (6)

≤
n∑

j=1

n∑

t=1
E
(
(2E(f(ω)ω(ej)) − 2Ef(ω)Eω(ej))1{t=j}

)

=
n∑

j=1
2Cov(f,ω(ej))

n∑

t=1
E(1{t=j})

= 2
n∑

j=1
δej(T)Cov(f,ω(ej))

The algorithm

So now we have to find a ‘good’ algorithm T which gives a good
bound on δej(T).
A natural algorithm would be to first enumerate the edges E in
Bn = [−n, n]d. Note that for the event {0 ↔ ∂Bn}, we do not need
to include the edges of ∂Bn.
So take V0 = 0, the origin, and E0 = ∅.
Let e =< 0, v > (say) be the edge adjacent to the origin which is
‘earliest’ in the enumeration of E.
Take

E1 = {e} and V1 =





V0 if ω(e) = 0
V0 ∪ {v} if ω(e) = 1

For the next step get the edge f =< x, y > %∈ E1 with x ∈ V1 and
y %∈ V1, which is ‘earliest’ in the enumeration of E \ E1.
Take

E2 = E1 ∪ {f} and V2 =





V1 if ω(f) = 0
V1 ∪ {y} if ω(f) = 1

Continue in this fashion until one of the following two happen for the
first time.

Vt ∩ ∂Bn %= ∅

in this case, you have found the open path from {0} to ∂Bn

there is no edge in E \ Et incident to Vt

in this case, there is no open path from {0} to ∂Bn
Here τ = t
Unfortunately, this algorithm does not give a good bound on δej(T).

Duminil-Copin’s work is to get an ‘averaging’ algorithm which gives a
better bound.
We want an algorithm to obtain all the open connected components
of Bn which intersect the square δ(Bk) for each k ∈ {1, . . . , n}.
The algorithm T we define below starts with

V0 = {v : v ∈ δ(Bk)} and E0 = ∅.

Having defined V0 ⊆ V1 ⊆ · · · ⊆ Vs and E0 ⊆ E1 ⊆ · · · ⊆ Es

(Step 1) if there exists an edge e =< x, y > %∈ Es with x ∈ Vs and
y %∈ Vs, choose the one ‘earliest’ in the enumeration of E \ Es.
With a slight abuse of notation let e =< x, y > be this edge.
The decision rule φt chooses this edge e and set

Es+1 = Es ∪ {e} and Vs+1 =





Vs if ω(e) = 0
Vs ∪ {y} if ω(e) = 1.

(Step 2) if no such edge exists then take Es+1 = Es ∪ {e}, where e is the
‘earliest’ in the enumeration of E, with e %∈ Es and Vs+1 = Vs.

We note that in the first step we are still exploring whether an edge
belongs to the connected open component of δ(Bk). When this step
stops, we are in exactly one of two situations
Situation 1. we have found a connected open component admitting a
path from the origin {0} to δ(Bn)

Situation 2. (i) we have found closed edges surrounding the origin
{0} in Bk which does not allow any open path from the origin {0} to
δ(Bk) or
(ii) we have found closed edges surrounding δ(Bk) in Bn \ Bk which
does not allow any open path from the origin δ(Bk) to δ(Bn).
In either case our goal has been achieved.

More importantly note that the stop time τ is smaller than the time
when the first step stops. Also τ may be strictly smaller because
Situation 1 or 2 may have been obtained even before all the connected
open components of δ(Bk) are found.
Thus for any edge e =< u, v >∈ E we see that the revealment of e
for the algorithm to study 1{0↔∂Bn} is smaller than that for the
above algorithm. Hence

δe(T) ≤ Pp{u ↔ δ(Bk)} + Pp{v ↔ δ(Bk)}.

W.l.o.g. assume that u %∈ ∂Bn and v %= 0.
Taking du = max{u1, . . . , ud}, where u = (u1, . . . , ud), we see that

n∑

k=1
Pp{u ↔ δ(Bk)} ≤

n∑

k=1
Pp{u ↔ (u + δ(Bk−du))}

≤ 2
n−1∑

k=0
θk. (7)

Combining everything we have

nθn(p)(1 − θn(p))
= nVar(1{0↔∂Bn}) direct calculation

≤ 2
n∑

k=1

∑

e∈E
δe(T) Cov(1{0↔∂Bn},ω(e)) OSSS

≤ 8
n−1∑

k=0
θk
∑

e∈E
Cov(1{0↔∂Bn},ω(e)) from (7)

= 8p(1 − p)θ′
n(p)

n−1∑

k=0
θk Russo’s formula

≤ 2θ′
n(p)

n−1∑

k=0
θk(p)

Finally, θn(p) being a polynomial in p with θp < 1 for p < 1, we can
get ε > 0 and a constant c > 0 such that 1 − θ(1 − ε) = c > 0,
which gives us

θ′
n(p) ≥ c

nθn(p)
∑n−1

k=0 θk(p)
as required.

Fortck
P D Cié

For Psk P II 1

